UVA11324 The Largest Clique(DP+缩点)
题意:给一张有向图G,求一个结点数最大的结点集,使得该结点中任意两个结点 u 和 v满足:要么 u 可以到达 v, 要么 v 可以到达 u(u 和 v 相互可达也可以)。
分析:”同一个强连通分量中的点要么都选,要么不选。把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它的结点数,则题目转化为求SCC图上权最大的路径。由于SCC图是一个 DAG, 可以用动态规划求解。“
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<stack>
#include<vector>
#define clc(a,b) memset(a,b,sizeof(a))
using namespace std;
const double eps=1e-;
const double pi=acos(-);
const int maxn=;
using namespace std; vector<int> G[maxn];
int pre[maxn], lowlink[maxn], sccno[maxn], dfs_clock, scc_cnt;
stack<int> S; void dfs(int u)
{
pre[u] = lowlink[u] = ++dfs_clock;
S.push(u);
for(int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if(!pre[v])
{
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}
else if(!sccno[v])
{
lowlink[u] = min(lowlink[u], pre[v]);
}
}
if(lowlink[u] == pre[u])
{
scc_cnt++;
for(;;)
{
int x = S.top();
S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
} void find_scc(int n)
{
dfs_clock = scc_cnt = ;
memset(sccno, , sizeof(sccno));
memset(pre, , sizeof(pre));
for(int i = ; i < n; i++)
if(!pre[i]) dfs(i);
} int sizee[maxn], TG[maxn][maxn];
int d[maxn];
int dp(int u)
{
int& ans = d[u];
if(ans >= ) return ans;
ans = sizee[u];
for(int v = ; v <= scc_cnt; v++)
if(u != v && TG[u][v]) ans = max(ans, dp(v) + sizee[u]);
return ans;
} int main()
{
int T, n, m;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &m);
for(int i = ; i < n; i++) G[i].clear();
for(int i = ; i < m; i++)
{
int u, v;
scanf("%d%d", &u, &v);
u--;
v--;
G[u].push_back(v);
} find_scc(n); // 找强连通分量 memset(TG, , sizeof(TG));
memset(sizee, , sizeof(sizee));
for(int i = ; i < n; i++)
{
sizee[sccno[i]]++; // 累加强连通分量大小(结点数)
for(int j = ; j < G[i].size(); j++)
TG[sccno[i]][sccno[G[i][j]]] = ; // 构造SCC图
} int ans = ;
memset(d, -, sizeof(d)); // 初始化动态规划记忆化数组
for(int i = ; i <= scc_cnt; i++) // 注意,SCC编号为1~scc_cnt
ans = max(ans, dp(i));
printf("%d\n", ans);
}
return ;
}
UVA11324 The Largest Clique(DP+缩点)的更多相关文章
- UVA11324 The Largest Clique (强连通缩点+DP最长路)
<题目链接> 题目大意: 给你一张有向图 G,求一个结点数最大的结点集,使得该结点集中的任意两个结点 u 和 v 满足:要么 u 可以达 v,要么 v 可以达 u(u,v相互可达也行). ...
- UVA11324 The Largest Clique[强连通分量 缩点 DP]
UVA - 11324 The Largest Clique 题意:求一个节点数最大的节点集,使任意两个节点至少从一个可以到另一个 同一个SCC要选一定全选 求SCC 缩点建一个新图得到一个DAG,直 ...
- 『题解』UVa11324 The Largest Clique
原文地址 Problem Portal Portal1:UVa Portal2:Luogu Portal3:Vjudge Description Given a directed graph \(\t ...
- UVA11324 The Largest Clique —— 强连通分量 + 缩点 + DP
题目链接:https://vjudge.net/problem/UVA-11324 题解: 题意:给出一张有向图,求一个结点数最大的结点集,使得任意两个结点u.v,要么u能到达v, 要么v能到达u(u ...
- UVA 11324.The Largest Clique tarjan缩点+拓扑dp
题目链接:https://vjudge.net/problem/UVA-11324 题意:求一个有向图中结点数最大的结点集,使得该结点集中任意两个结点u和v满足:要目u可以到达v,要么v可以到达u(相 ...
- uva11324 The Largest Clique --- 强连通+dp
给一个有向图G,求一个子图要求当中随意两点至少有一边可达. 问这个子图中最多含多少个顶点. 首先找SCC缩点建图.每一个点的权值就是该点包括点的个数. 要求当中随意两点可达,实际上全部边仅仅能同方向, ...
- UVA - 11324 The Largest Clique 强连通缩点+记忆化dp
题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...
- UVA - 11324 The Largest Clique (强连通缩点+dp)
题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉 ...
- UVA 11324 The Largest Clique(缩点+DAG上的dp)
求最大团.和等价性证明有类似之处,只不过这个不是求互推,而是只要a->b,或b->a即可. 同样的,容易想到先缩点,得到DAG,每个节点上保存SCC的点数,相信任意一条由根节点(入度为零) ...
随机推荐
- live 写博
1 2 3 4 5 1 2 3 4 5 ...
- Linux是一门真正的黑客高手艺术
黑客这个词从诞生到现在,从来就没有解释为“高级入侵者”.“病毒制造者”或者“QQ盗号者”过.我至今不清楚在中国是谁先把黑客和这些无聊的词汇联系在了一起,导致如此多的人被误导.但有一点是肯定的,不负责任 ...
- Nginx+Keepalived主备负载均衡
实验环境及软件版本: CentOS版本: 6.6(2.6.32.-504.el6.x86_64) nginx版本: nginx-1.6.2 keepalived版本:keepalived ...
- python log 层次结构
文件结构 - run.py - b -- __init__.py run.py import logging import b log = logging.getLogger("" ...
- Python设计模式——模版方法模式
1.模版方法模式 做题的列子: 需求:有两个学生,要回答问题,写出自己的答案 #encoding=utf-8 __author__ = 'kevinlu1010@qq.com' class Stude ...
- Junit4.12、Hamcrest1.3、Eclemma的安装和使用
1. Junit4.12和Hamcrest1.3的安装过程 步骤: 网上下载Junit和Hamcrest包文件,保存在本地. 新建Java项目命名为Triangle,在Eclipse菜单栏选择项目(P ...
- MongoDB 权限认证
MongoDB已经使用很长一段时间了,基于MongoDB的数据存储也一直没有使用到权限访问(MongoDB默认设置为无权限访问限制),因为考虑到数据安全的原因特地花了一点时间研究了一下,网上搜出来的解 ...
- 从clone()谈protected
看到Object的clone()是protected的,然后看到<java2认证考试指南>上描述:一个对象只能请求其他对象的克隆,后者的类与被克隆对象属于同一类,或是被克隆对象的子类. e ...
- jquery 简单弹出层(转)
预定义html代码:没有 所有代码通过js生成和移除. 预定义css /* 基本弹出层样式 */ .my-popup-overlay { width:100%; height:auto; /* wid ...
- zepto源码学习-01-整体感知
在公司一直做移动端的项目,偶尔会做点PC端的东西,但基本上都是和移动端打交道. 移动端嘛必须上zepto,简单介绍下Zepto:它是一个面向高级浏览器的JavaScript框架的,实现JQuery的大 ...