http://poj.org/problem?id=2195

题意 :  N*M的点阵中,有N个人,N个房子。让x个人走到这x个房子中,只能上下左右走,每个人每走一步就花1美元,问当所有的人都归位了之后,需要花多少美元。

思路 :最小费用最大流。把人作为一个顶点集合U,房子作为另一个顶点集合V,把U中所有点到V中所有点连线,费用cost[u][v]为abs(△x)+abs(△y),反向弧费用cost[v][u]= -cost[u][v],容量cap[u][v]=1,构成一个多源多汇的二分图。 由于每一个多源多汇的网络流都必有一个与之对应的单源单汇的网络流,为了便于解题,由此构造一个超级源s和超级汇t,超级源s与U中所有点相连,费用cost[s][u]=0(这是显然的),容量cap[s][u]=1;V中所有点与超级汇t相连,费用cost[v][t]=0(这是显然的),容量cap[t][v]=1。至于其他不连通的点,费用与容量均为0。容量为0的边,可以理解为饱和边,不再连通。而上述的所有边之所以容量初始化为1,是因为每间房子只允许入住1个人。而与超级源(汇)相连的边的费用之所以为0,是为了现在所构造的单源单汇网络流最终所求的最小费用等于原来的多源多汇网络流的最小费用。

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <queue>
#include <math.h> using namespace std; const int maxn = ;
struct node
{
int u ;
int v ;
}p[],h[] ; int pre[maxn],dist[maxn],n,m,pn,hn,s,t,cnt;
int cap[maxn][maxn],flow[maxn][maxn],cost[maxn][maxn] ;
bool flag[maxn] ;
char ch[maxn][maxn] ; const int INF = ; void Init()
{
pn = hn = ;
cnt = s = ;
memset(cap,,sizeof(cap)) ;
memset(flow,,sizeof(flow)) ;
memset(cost,,sizeof(cost)) ;
}
void spfa()
{
queue<int>Q ;
for(int i = ; i < maxn ; i++)
dist[i] = INF ;
memset(pre,-,sizeof(pre)) ;
memset(flag,false,sizeof(flag)) ;
Q.push(s) ;
flag[s] = true ;
dist[s] = ;
while(!Q.empty())
{
int u = Q.front() ;
Q.pop() ;
flag[u] = false ;
for(int v = ; v <= t ; v++)
{
if(cap[u][v] && dist[v] > dist[u] + cost[u][v])
{
dist[v] = dist[u] + cost[u][v] ;
pre[v] = u ;
if(!flag[v])
{
Q.push(v) ;
flag[v] = true ;
}
}
}
}
} void mcmf()
{
for( ; ; )
{
spfa() ;
if(pre[t] == -) break ;//没有父节点了,
int x = t ,minn = INF ;
while(pre[x] != -)
{
minn = min(minn,cap[pre[x]][x]) ;
x = pre[x] ;
}
x = t ;
while(pre[x] != -)
{
cap[pre[x]][x] -= minn ;
cap[x][pre[x]] += minn ;
cnt += minn*cost[pre[x]][x];
x = pre[x];
}
} } int main()
{
while(scanf("%d %d",&n,&m) != EOF)
{
if(n == && m == ) break ;
Init() ;
for(int i = ; i < n ; i++)
{
scanf("%s",ch[i]) ;
for(int j = ; j < m ; j++)
{
if(ch[i][j] == 'H')
{
h[++hn].u = i ;
h[hn].v = j ;
}
else if(ch[i][j] == 'm')
{
p[++pn].u = i ;
p[pn].v = j ;
}
}
}
t = pn+hn+ ;
for(int i = ; i <= pn ; i++)
cap[s][i] = ;
for(int i = ; i <= hn ; i++)
cap[i+pn][t] = ;
for(int i = ; i <= pn ; i++)
{
for(int j = ; j <= hn ; j++)
{
cap[i][j+pn] = ;
cost[i][j+pn] = fabs(p[i].u-h[j].u) + fabs(p[i].v-h[j].v) ;
cost[j+pn][i] = -cost[i][j+pn] ;
}
}
mcmf() ;
printf("%d\n",cnt) ;
}
return ;
}

POJ 2195 Going Home(最小费用最大流)的更多相关文章

  1. POJ 2195 - Going Home - [最小费用最大流][MCMF模板]

    题目链接:http://poj.org/problem?id=2195 Time Limit: 1000MS Memory Limit: 65536K Description On a grid ma ...

  2. POJ 2195 Going Home 最小费用最大流 尼玛,心累

    D - Going Home Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Subm ...

  3. poj 2195 Going Home(最小费用最大流)

    题目:http://poj.org/problem?id=2195 有若干个人和若干个房子在一个给定网格中,每人走一个都要一定花费,每个房子只能容纳一人,现要求让所有人进入房子,且总花费最小. 构造一 ...

  4. poj 2351 Farm Tour (最小费用最大流)

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17230   Accepted: 6647 Descri ...

  5. POJ 2157 Evacuation Plan [最小费用最大流][消圈算法]

    ---恢复内容开始--- 题意略. 这题在poj直接求最小费用会超时,但是题意也没说要求最优解. 根据线圈定理,如果一个跑完最费用流的残余网络中存在负权环,那么顺着这个负权环跑流量为1那么会得到更小的 ...

  6. poj 2135 Farm Tour 最小费用最大流建图跑最短路

    题目链接 题意:无向图有N(N <= 1000)个节点,M(M <= 10000)条边:从节点1走到节点N再从N走回来,图中不能走同一条边,且图中可能出现重边,问最短距离之和为多少? 思路 ...

  7. POJ 3680: Intervals【最小费用最大流】

    题目大意:你有N个开区间,每个区间有个重量wi,你要选择一些区间,使得满足:每个点被不超过K个区间覆盖的前提下,重量最大 思路:感觉是很好想的费用流,把每个区间首尾相连,费用为该区间的重量的相反数(由 ...

  8. POJ 2135 Farm Tour [最小费用最大流]

    题意: 有n个点和m条边,让你从1出发到n再从n回到1,不要求所有点都要经过,但是每条边只能走一次.边是无向边. 问最短的行走距离多少. 一开始看这题还没搞费用流,后来搞了搞再回来看,想了想建图不是很 ...

  9. [poj] 1235 Farm Tour || 最小费用最大流

    原题 费用流板子题. 费用流与最大流的区别就是把bfs改为spfa,dfs时把按deep搜索改成按最短路搜索即可 #include<cstdio> #include<queue> ...

  10. POJ 2516 Minimum Cost [最小费用最大流]

    题意略: 思路: 这题比较坑的地方是把每种货物单独建图分开算就ok了. #include<stdio.h> #include<queue> #define MAXN 500 # ...

随机推荐

  1. [记录]使用Gitblit 在windows 上安装Git Server

    参考了: Windows平台下搭建Git服务器的图文教程 主要修改了:data/gitblit.properties # Include Gitblit's 'defaults.properties' ...

  2. linux文件系统评估之inode

    存储系统上线前要做资源评估,通常需要在性能(即iops.带宽等)和容量维度进行业务评估:而具体到本地文件系统存储的容量时,需要根据具体业务对文件系统的可用数据空间和可用inode数进行评估,作者通过工 ...

  3. 第一章 认识jQuery

    jQuery是一个优秀的JavaScript库,它凭借简洁地语法和跨平台的兼容性,极大地简化了开发人员遍历HTML文档,操作DOM,处理事件,执行动画和开发Ajax操作. jQuery优势:1.轻量级 ...

  4. Sql Server通过BCP数据导出Excel

    1.1. bcp的主要参数介绍 bcp共有四个动作可以选择. (1) 导入. 这个动作使用in命令完成,后面跟需要导入的文件名. (2) 导出. 这个动作使用out命令完成,后面跟需要导出的文件名. ...

  5. Windows下 Scala开发环境搭建

    1.配置jdk:可看这里 2.下载scala,并安装 3.配置scala环境变量,把scala的安装路径加入path内 ps:验证是否安装正确:cmd->输入scala,如果出现scala环境, ...

  6. JD(转载)

    时间:2012-9-11 地点:川大 我只能说第一家公司,不是一般的火爆.不得不吐槽一下: 京东宣讲完全没有计划,只看到个下午两点半宣讲,结果跑过去,下午两点是宣讲管培的.在川大外的德克士呆了一下午. ...

  7. SQLServer 2008数据库查看死锁、堵塞的SQL语句

      --每秒死锁数量 SELECT * FROM sys.dm_os_performance_counters WHERE counter_name LIKE 'Number of Deadlocks ...

  8. 通过拆分字段优化SQL

    数据库环境:SQL SERVER 2008R2 今天看到一条用函数处理连接的SQL,是群里某位网友的,SQL语句如下: SELECT SO_Order.fdate , SO_Order.fsn FRO ...

  9. eclipse下的tomcat内存设置大小

    在eclipse中设置,居然可以了, 设置步骤如下: 1.点击eclipse上的debug图标旁边的下拉箭头 2.然后选择Run Configurations, 3.系统弹出设置tomcat配置页面, ...

  10. Codevs 3289 花匠 2013年NOIP全国联赛提高组

    3289 花匠 2013年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 花匠栋栋种了一排花,每株花都 ...