The Closest M Points

Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 98304/98304 K (Java/Others)
Total Submission(s): 3285    Accepted Submission(s): 1201

Problem Description
The
course of Software Design and Development Practice is objectionable.
ZLC is facing a serious problem .There are many points in K-dimensional
space .Given a point. ZLC need to find out the closest m points.
Euclidean distance is used as the distance metric between two points.
The Euclidean distance between points p and q is the length of the line
segment connecting them.In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two points in Euclidean n-space, then the distance from p to q, or from q to p is given by:

Can you help him solve this problem?
 
Input
In
the first line of the text file .there are two non-negative integers n
and K. They denote respectively: the number of points, 1 <= n <=
50000, and the number of Dimensions,1 <= K <= 5. In each of the
following n lines there is written k integers, representing the
coordinates of a point. This followed by a line with one positive
integer t, representing the number of queries,1 <= t <=10000.each
query contains two lines. The k integers in the first line represent the
given point. In the second line, there is one integer m, the number of
closest points you should find,1 <= m <=10. The absolute value of
all the coordinates will not be more than 10000.
There are multiple test cases. Process to end of file.
 
Output
For each query, output m+1 lines:
The first line saying :”the closest m points are:” where m is the number of the points.
The following m lines representing m points ,in accordance with the order from near to far
It
is guaranteed that the answer can only be formed in one ways. The
distances from the given point to all the nearest m+1 points are
different. That means input like this:
2 2
1 1
3 3
1
2 2
1
will not exist.
 
Sample Input
3 2
1 1
1 3
3 4
2
2 3
2
2 3
1
 
Sample Output
the closest 2 points are:
1 3
3 4
the closest 1 points are:
1 3
  
  绳命中第一道KD树,模板题,照着打的。
  难道————KD树==剪枝?嗯,我再想想~~
 #include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int maxn=;
int cmpNo,K;
struct Node{
int x[],l,r,id;
bool operator <(const Node &b)const{
return x[cmpNo]<b.x[cmpNo];
}
}; long long Dis(const Node &a,const Node &b){
long long ret=;
for(int i=;i<K;i++)
ret+=(a.x[i]-b.x[i])*(a.x[i]-b.x[i]);
return ret;
} Node p[maxn]; int Build(int l,int r,int d){
if(l>r)return ;
cmpNo=d;
int mid=l+r>>;
nth_element(p+l,p+mid,p+r+);
p[mid].l=Build(l,mid-,(d+)%K);
p[mid].r=Build(mid+,r,(d+)%K);
return mid;
} priority_queue<pair<long long,int> >q;
void Kth(int l,int r,Node tar,int k,int d){
if(l>r)return;
int mid=l+r>>;
pair<long long,int>v=make_pair(Dis(p[mid],tar),p[mid].id);
if(q.size()==k&&v<q.top())q.pop();
if(q.size()<k)q.push(v);
long long t=tar.x[d]-p[mid].x[d];
if(t<=){
Kth(l,mid-,tar,k,(d+)%K);
if(q.top().first>t*t)
Kth(mid+,r,tar,k,(d+)%K);
}
else{
Kth(mid+,r,tar,k,(d+)%K);
if(q.top().first>t*t)
Kth(l,mid-,tar,k,(d+)%K);
}
}
int k,ans[];
Node a[maxn];
int main(){
int n;
while(scanf("%d%d",&n,&K)!=EOF){
for(int id=;id<=n;id++){
for(int i=;i<K;i++)
scanf("%d",&p[id].x[i]);
p[id].id=id;
a[id]=p[id];
}
Build(,n,);
int Q,tot;
scanf("%d",&Q);
Node tar;
while(Q--){
for(int i=;i<K;i++)
scanf("%d",&tar.x[i]);
scanf("%d",&k);
printf("the closest %d points are:\n",k);
for(int i=;i<=k;i++)q.push(make_pair(1e18,-));
Kth(,n,tar,k,);tot=;
while(!q.empty()){
int id=(q.top()).second;q.pop();
ans[tot++]=id;
}
for(int i=tot-;i>=;i--)
for(int j=;j<K;j++)
printf("%d%c",a[ans[i]].x[j],j==K-?'\n':' ');
}
}
return ;
}
 

数据结构(KD树):HDU 4347 The Closest M Points的更多相关文章

  1. bzoj 3053 HDU 4347 : The Closest M Points kd树

    bzoj 3053 HDU 4347 : The Closest M Points  kd树 题目大意:求k维空间内某点的前k近的点. 就是一般的kd树,根据实测发现,kd树的两种建树方式,即按照方差 ...

  2. hdu 4347 The Closest M Points (kd树)

    版权声明:本文为博主原创文章,未经博主允许不得转载. hdu 4347 题意: 求k维空间中离所给点最近的m个点,并按顺序输出  . 解法: kd树模板题 . 不懂kd树的可以先看看这个 . 不多说, ...

  3. hdu 4347 The Closest M Points(KD树)

    Problem - 4347 一道KNN的题.直接用kd树加上一个暴力更新就撸过去了.写的时候有一个错误就是搜索一边子树的时候返回有当前层数会被改变了,然后就直接判断搜索另一边子树,搞到wa了半天. ...

  4. HDU 4347 - The Closest M Points - [KDTree模板题]

    本文参考: https://www.cnblogs.com/GerynOhenz/p/8727415.html kuangbin的ACM模板(新) 题目链接:http://acm.hdu.edu.cn ...

  5. HDU 4347 The Closest M Points (kdTree)

    赤果果的kdTree. 学习传送门:http://www.cnblogs.com/v-July-v/archive/2012/11/20/3125419.html 其实就是二叉树的变形 #includ ...

  6. 【HDOJ】4347 The Closest M Points

    居然是KD解. /* 4347 */ #include <iostream> #include <sstream> #include <string> #inclu ...

  7. hud 4347 The Closest M Points(KD-Tree)

    传送门 解题思路 \(KD-Tree\)模板题,\(KD-Tree\)解决的是多维问题,它是一个可以储存\(K\)维数据的二叉树,每一层都被一维所分割.它的插入删除复杂度为\(log^2 n\),它查 ...

  8. KD树的极简单笔记(待后续更新)

    今天(18.5.4)室友A突然问我算法怎么入门,兴奋之下给他安利了邓公的<数据结构>,然而他接着又问我能不能两周内快速入门,毕竟打算搞Machine Learning,然后掏出手机看了下他 ...

  9. K-D树问题 HDU 4347

    K-D树可以看看这个博客写的真心不错!这里存个版 http://blog.csdn.net/zhjchengfeng5/article/details/7855241 HDU 4349 #includ ...

随机推荐

  1. JAVA导出Excel封装

    1.数据bean public class ExcelBean { private String name; private String sheetName; private ExcelTitle[ ...

  2. 如何使用node中的buffer

    介绍:Buffer类是一个全局类,是一个比较罕见不需要require( ‘buffer’ )就可以使用的类,Buffer类似与数组也有length, 它里面的元素为16进制的两位数,即 0-255的数 ...

  3. (转)基于PHP的cURL快速入门

    1. 原文:基于PHP的cURL快速入门 英文原文:http://net.tutsplus.com/tutorial ... for-mastering-curl/ 原文作者:Burak Guzel ...

  4. Getting Started with Testing ——开始单元测试

    Android tests are based on JUnit, and you can run them either as local unit tests on the JVM or as i ...

  5. jQuery AJAX实现调用页面后台方法

    1.新建demo.aspx页面.2.首先在该页面的后台文件demos.aspx.cs中添加引用. using System.Web.Services; 3.无参数的方法调用. 大家注意了,这个版本不能 ...

  6. 解决Xcode7多个模拟器的方法

    xcode模拟器都这样显示,没办法判断是哪个系统,解决办法是 1.关闭xcode 2.终端输入 sudo killall -9 com.apple.CoreSimulator.CoreSimulato ...

  7. C# 封装

    封装就是吧里面实现的细节包起来,这样很复杂的逻辑经过包装之后给别人使用就很方便,别人不需要了解里面是如何实现的,只要传入所需要的参数就可以得到想要的结果.其实这和黑盒测试差不多

  8. HDOJ 2037简单的贪心算法

    代码: #include<iostream> using namespace std; int main() { int n,s,t1[100],t2[100],i,t,j; while( ...

  9. QT QSettings 操作(导入导出、保存获取信息)*.ini文件详解

    1.QSettings基本使用 1.1.生成.ini文件,来点实用的代码吧. QString fileName;fileName = QCoreApplication::applicationDirP ...

  10. javascript——事件处理

    <script type="text/javascript"> function EventUtil() { var _self = this; ///添加事件 var ...