Problem Description

=== Op tech briefing, 2002/11/02 06:42 CST ===

“The item is locked in a Klein safe behind a painting in the second-floor library. Klein safes are extremely rare; most of them, along with Klein and his factory, were destroyed in World War II. Fortunately old Brumbaugh from research knew Klein’s secrets and wrote them down before he died. A Klein safe has two distinguishing features: a combination lock that uses letters instead of numbers, and an engraved quotation on the door. A Klein quotation always contains between five and twelve distinct uppercase letters, usually at the beginning of sentences, and mentions one or more numbers. Five of the uppercase letters form the combination that opens the safe. By combining the digits from all the numbers in the appropriate way you get a numeric target. (The details of constructing the target number are classified.) To find the combination you must select five letters v, w, x, y, and z that satisfy the following equation, where each letter is replaced by its ordinal position in the alphabet (A=1, B=2, …, Z=26). The combination is then vwxyz. If there is more than one solution then the combination is the one that is lexicographically greatest, i.e., the one that would appear last in a dictionary.”

v - w^2 + x^3 - y^4 + z^5 = target

“For example, given target 1 and letter set ABCDEFGHIJKL, one possible solution is FIECB, since 6 - 9^2 + 5^3 - 3^4 + 2^5 = 1. There are actually several solutions in this case, and the combination turns out to be LKEBA. Klein thought it was safe to encode the combination within the engraving, because it could take months of effort to try all the possibilities even if you knew the secret. But of course computers didn’t exist then.”

=== Op tech directive, computer division, 2002/11/02 12:30 CST ===

“Develop a program to find Klein combinations in preparation for field deployment. Use standard test methodology as per departmental regulations. Input consists of one or more lines containing a positive integer target less than twelve million, a space, then at least five and at most twelve distinct uppercase letters. The last line will contain a target of zero and the letters END; this signals the end of the input. For each line output the Klein combination, break ties with lexicographic order, or ‘no solution’ if there is no correct combination. Use the exact format shown below.”

Sample Input

1 ABCDEFGHIJKL

11700519 ZAYEXIWOVU

3072997 SOUGHT

1234567 THEQUICKFROG

0 END

Sample Output

LKEBA

YOXUZ

GHOST

no solution

题意:输入一个数target 和一个字符串 s,在字符串 s 找出一个由5个字符组成的最大字符串使得v - w^2 + x^3 - y^4 + z^5 = target ;

分析:枚举所有的5个元素组成的集合,依次去判断

5层循环

import java.util.Arrays;
import java.util.Scanner; public class Main{
static char at[]={' ','A','B','C','D','E','F','G','H','I','J'
,'K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'};
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
//for(int i='A';i<='Z';i++){
//char c = (char)i;
//System.out.print("'"+c+"',");
//}
while(sc.hasNext()){
int target = sc.nextInt();
String str = sc.next();
if(target==0&&str.equals("END")){
return;
}
char chs[] = str.toCharArray();
Arrays.sort(chs);
for(int i=0,j=chs.length-1;i<chs.length/2;i++,j--){
char c=chs[i];
chs[i]=chs[j];
chs[j]=c;
}
boolean haveAnswer = false; con: for(int a=0;a<chs.length;a++){ for(int b=0;b<chs.length;b++){
if(a==b){
continue;
}
for(int c=0;c<chs.length;c++){
if(a==c||b==c){
continue;
}
for(int d=0;d<chs.length;d++){
if(d==a||d==b||d==c){
continue;
}
for(int e=0;e<chs.length;e++){
if(e==a||e==b||e==c||e==d){
continue;
}
int ap[] = new int[5];
for(int j=0;j<ap.length;j++){
for(int i=1;i<at.length;i++){
if(j==0){
if(chs[a]==at[i]){
ap[0]=i;
break;
}
}else
if(j==1){
if(chs[b]==at[i]){
ap[1]=i;
break;
}
}else
if(j==2){
if(chs[c]==at[i]){
ap[2]=i;
break;
}
}else
if(j==3){
if(chs[d]==at[i]){
ap[3]=i;
break;
}
}else
if(j==4){
if(chs[e]==at[i]){
ap[4]=i;
break;
}
}
}
} int sum=0;
for(int i=0;i<ap.length;i++){
if(i%2==0){
sum+=Math.pow(ap[i], i+1);
}else{
sum-=Math.pow(ap[i], i+1);
}
}
if(sum==target){
String s="";
s+=chs[a];
s+=chs[b];
s+=chs[c];
s+=chs[d];
s+=chs[e];
System.out.println(s);
haveAnswer=true;
break con;
}
}
}
}
}
}
if(!haveAnswer){
System.out.println("no solution");
}
}
}
}

HDOJ/HDU 1015 Safecracker(枚举、暴力)的更多相关文章

  1. HDOJ(HDU).1015 Safecracker (DFS)

    HDOJ(HDU).1015 Safecracker [从零开始DFS(2)] 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HDOJ.1 ...

  2. HDU 1015.Safecracker【暴力枚举】【8月17】

    Safecracker Problem Description === Op tech briefing, 2002/11/02 06:42 CST ===  "The item is lo ...

  3. ZOJ 1403&&HDU 1015 Safecracker【暴力】

    Safecracker Time Limit: 2 Seconds      Memory Limit: 65536 KB === Op tech briefing, 2002/11/02 06:42 ...

  4. HDOJ/HDU 1015 Safecracker(深搜)

    Problem Description === Op tech briefing, 2002/11/02 06:42 CST === "The item is locked in a Kle ...

  5. hdu 1015 Safecracker 水题一枚

    题目链接:HDU - 1015 === Op tech briefing, 2002/11/02 06:42 CST === "The item is locked in a Klein s ...

  6. HDU 1015 Safecracker 解决问题的方法

    Problem Description === Op tech briefing, 2002/11/02 06:42 CST ===  "The item is locked in a Kl ...

  7. HDU 1015 Safecracker【数值型DFS】

    Safecracker Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  8. HDU 1015 Safecracker(第一次用了搜索去遍历超时,第二次用for循环能够了,思路一样的)

    Safecracker Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total S ...

  9. HDU 1015 Safecracker

    解题思路:这题相当诡异,样例没过,交了,A了,呵呵,因为理论上是可以通过的,所以 我交了一发,然后就神奇的过了.首先要看懂题目. #include<cstdio> #include< ...

随机推荐

  1. 导入外部jar包的方法

    注:使用的编译平台为eclipse <算法>一书中需要引入外部jar包(algs4.jar),因此特地去学了下导入外部jar包的方法.步骤如下: 1.先将algs4.jar拷到j如下路径: ...

  2. [工具]toolbox_graph基本操作

    toolbox_graph提供了对3D模型的一些操作.MATLAB代码源自:http://www.mathworks.com/matlabcentral/fileexchange/5355-toolb ...

  3. EntityClient 介绍

    System.Data.EntityClient 命名空间是 实体框架的 .NET Framework 数据提供程序.EntityClient 提供程序使用存储特定的 ADO.NET 数据提供程序类和 ...

  4. 处理safari缓存的办法

    window.onpageshow = function(event) {        if (event.persisted) {             alert("From bac ...

  5. Libnids---编写网络应用程序的利器

    一.前言 Libnids是一个用于网络入侵检测开发的专业编程接口,它使用Libpcap进行数据包的捕获.同时,Libnids提供了TCP/IP数据流重组功能,因此省去了应用层自己考虑数据分片.重传等情 ...

  6. 缓存 Cache

    Controllers层 public class HomeController : Controller    {        //        // GET: /Home/       // ...

  7. 监听div内容改变

    做前端突击队,外星人那道是自己手动模拟那个时间的变化的,但正确思路应该是监听div内容的变化然后同步到输入框中,遂今天找了一下,结果如下: $('div').bind('DOMNodeInserted ...

  8. Ubuntu 12.04如何从登录界面登录root

    root登录,可以使我们拥有管理系统最高的权限,但是随之带来的也是,系统的安全得不到足够的保障.Ubuntu官方资料说不推荐我们以root方式登录到系统中,但是如果我们真想这么做,也是可以的. 不同版 ...

  9. nvarchar类型自动增长

    ,Col AS 'XH' + RIGHT('0000' + RTRIM(ID),4)

  10. Nopcommerce 3.7 增加了Redis 作为缓存啦

    Nopcommerce 3.7  版增加了Redis 缓存,相比之前内存缓存, 感觉使用了Redis 作为缓存,明显加快了Web页面响应速度! 废话少说 拉代码: 1 git clone https: ...