OPENCV(2) —— Basic Structures(二)
Mat
OpenCV C++ n-dimensional dense array class
The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel volumes, vector fields, point clouds, tensors, histograms (though, very high-dimensional histograms may be better stored in a SparseMat ).
The data layout of the array
is defined by the array M.step[], so that the address of element
, where
, is computed as:
In case of a 2-dimensional array, the above formula is reduced to:
Note that M.step[i] >= M.step[i+1] (in fact, M.step[i] >= M.step[i+1]*M.size[i+1] ). This means that 2-dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-plane, and so on. M.step[M.dims-1] is minimal and always equal to the element size M.elemSize() .
There are many different ways to create a Mat object.
Use the create(nrows, ncols, type) method or the similar Mat(nrows, ncols, type[, fillValue]) constructor.
// make a 7x7 complex matrix filled with 1+3j.
Mat M(7,7,CV_32FC2,Scalar(1,3));
// and now turn M to a 100x60 15-channel 8-bit matrix.
// The old content will be deallocated
M.create(100,60,CV_8UC(15));As noted in the introduction to this chapter, create() allocates only a new array when the shape or type of the current array are different from the specified ones.
Create a multi-dimensional array:
// create a 100x100x100 8-bit array
int sz[] = {100, 100, 100};
Mat bigCube(3, sz, CV_8U, Scalar::all(0));It passes the number of dimensions =1 to the Mat constructor but the created array will be 2-dimensional with the number of columns set to 1. So, Mat::dims is always >= 2 (can also be 0 when the array is empty).
Construct a header for a part of another array. It can be a single row, single column, several rows, several columns, rectangular region in the array (called a minor in algebra) or a diagonal. Such operations are also O(1) because the new header references the same data. You can actually modify a part of the array using this feature, for example:
// add the 5-th row, multiplied by 3 to the 3rd row
M.row(3) = M.row(3) + M.row(5)*3; // now copy the 7-th column to the 1-st column
// M.col(1) = M.col(7); // this will not work
Mat M1 = M.col(1);
M.col(7).copyTo(M1); // create a new 320x240 image
Mat img(Size(320,240),CV_8UC3);
// select a ROI
Mat roi(img, Rect(10,10,100,100));
// fill the ROI with (0,255,0) (which is green in RGB space);
// the original 320x240 image will be modified
roi = Scalar(0,255,0);Due to the additional datastart and dataend members, it is possible to compute a relative sub-array position in the main container array using locateROI():
Mat A = Mat::eye(10, 10, CV_32S);
// extracts A columns, 1 (inclusive) to 3 (exclusive).
Mat B = A(Range::all(), Range(1, 3));
// extracts B rows, 5 (inclusive) to 9 (exclusive).
// that is, C ~ A(Range(5, 9), Range(1, 3))
Mat C = B(Range(5, 9), Range::all());
Size size; Point ofs;
C.locateROI(size, ofs);
// size will be (width=10,height=10) and the ofs will be (x=1, y=5)
Make a header for user-allocated data. It can be useful to do the following:
Process “foreign” data using OpenCV (for example, when you implement a DirectShow* filter or a processing module for gstreamer, and so on). For example:
void process_video_frame(const unsigned char* pixels,
int width, int height, int step)
{
Mat img(height, width, CV_8UC3, pixels, step);
GaussianBlur(img, img, Size(7,7), 1.5, 1.5);
}Quickly initialize small matrices and/or get a super-fast element access.
double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};
Mat M = Mat(3, 3, CV_64F, m).inv();
Partial yet very common cases of this user-allocated data case are conversions from CvMat and IplImage to Mat. For this purpose, there are special constructors taking pointers to CvMat or IplImage and the optional flag indicating whether to copy the data or not.
Backward conversion from Mat to CvMat or IplImage is provided via cast operators Mat::operator CvMat()const and Mat::operator IplImage(). The operators do NOT copy the data.
IplImage* img = cvLoadImage("greatwave.jpg", 1);
Mat mtx(img); // convert IplImage* -> Mat
CvMat oldmat = mtx; // convert Mat -> CvMat
CV_Assert(oldmat.cols == img->width && oldmat.rows == img->height &&
oldmat.data.ptr == (uchar*)img->imageData && oldmat.step == img->widthStep);
Use MATLAB-style array initializers, zeros(), ones(), eye(), for example:
// create a double-precision identity martix and add it to M.
M += Mat::eye(M.rows, M.cols, CV_64F);
Use a comma-separated initializer:
// create a 3x3 double-precision identity matrix
Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);
// compute sum of positive matrix elements
// (assuming that M isa double-precision matrix)
double sum=0;
for(int i = 0; i < M.rows; i++)
{
const double* Mi = M.ptr<double>(i);
for(int j = 0; j < M.cols; j++)
sum += std::max(Mi[j], 0.);
}
// compute the sum of positive matrix elements, optimized variant
double sum=0;
int cols = M.cols, rows = M.rows;
if(M.isContinuous())
{
cols *= rows;
rows = 1;
}
for(int i = 0; i < rows; i++)
{
const double* Mi = M.ptr<double>(i);
for(int j = 0; j < cols; j++)
sum += std::max(Mi[j], 0.);
}
// compute sum of positive matrix elements, iterator-based variant
double sum=0;
MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>();
for(; it != it_end; ++it)
sum += std::max(*it, 0.);
Mat::row
Creates a matrix header for the specified matrix row.
The method makes a new header for the specified matrix row and returns it. This is an O(1) operation, regardless of the matrix size. The underlying data of the new matrix is shared with the original matrix.
Mat::rowRange
Creates a matrix header for the specified row span.
The method makes a new header for the specified row span of the matrix. Similarly to Mat::row() and Mat::col() , this is an O(1) operation.
Mat::copyTo
Copies the matrix to another one.
The method copies the matrix data to another matrix. Before copying the data, the method invokes
m.create(this->size(), this->type());so that the destination matrix is reallocated if needed. While m.copyTo(m); works flawlessly, the function does not handle the case of a partial overlap between the source and the destination matrices.
When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, the newly allocated matrix is initialized with all zeros before copying the data.
- Mat::assignTo
- Mat::setTo
- Mat::reshape
- Mat::t
- Mat::inv
- Mat::mul
- Mat::cross
- Mat::dot
- Mat::zeros
- Mat::ones
- Mat::eye
- Mat::create
- Mat::addref
- Mat::release
- Mat::resize
- Mat::reserve
- Mat::push_back
- Mat::pop_back
- Mat::locateROI
- Mat::adjustROI
- Mat::operator()
- Mat::operator CvMat
- Mat::operator IplImage
- Mat::total
- Mat::isContinuous
- Mat::elemSize
- Mat::elemSize1
- Mat::type
- Mat::depth
- Mat::channels
- Mat::step1
- Mat::size
- Mat::empty
- Mat::ptr
- Mat::at
- Mat::begin
- Mat::end
Mat 类的熟悉程度决定着对OpenCV的操纵能力,必须花时间掌握好~~
OPENCV(2) —— Basic Structures(二)的更多相关文章
- OPENCV(2) —— Basic Structures(一)
DataType A primitive OpenCV data type is one of unsigned char, bool,signed char, unsigned short, sig ...
- opencv学习笔记(二)寻找轮廓
opencv学习笔记(二)寻找轮廓 opencv中使用findContours函数来查找轮廓,这个函数的原型为: void findContours(InputOutputArray image, O ...
- HTTP认证之基本认证——Basic(二)
导航 HTTP认证之基本认证--Basic(一) HTTP认证之基本认证--Basic(二) HTTP认证之摘要认证--Digest(一) HTTP认证之摘要认证--Digest(二) 在HTTP认证 ...
- OpenCV中Mat与二维数组之间的转换
---恢复内容开始--- 在OpenCV中将Mat(二维)与二维数组相对应,即将Mat中的每个像素值赋给一个二维数组. 全部代码如下: #include <iostream> #inclu ...
- 基于Opencv识别,矫正二维码(C++)
参考链接 [ 基于opencv 识别.定位二维码 (c++版) ](https://www.cnblogs.com/yuanchenhui/p/opencv_qr.html) OpenCV4.0.0二 ...
- OpenCV使用FindContours进行二维码定位
我使用过FindContours,而且知道有能够直接寻找联通区域的函数.但是我使用的大多只是"最大轮廓"或者"轮廓数目"这些数据.其实轮廓还有另一个很重要的性质 ...
- opencv探索之路(十二):感兴趣区域ROI和logo添加技术
在图像处理领域,有一个非常重要的名词ROI. 什么是ROI? 它的英文全称是Region Of Interest,对应的中文解释就是感兴趣区域. 感兴趣区域,就是我们从图像中选择一个图像区域,这个区域 ...
- Python+OpenCV图像处理(十二)—— 图像梯度
简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值, ...
- Python下opencv使用笔记(二)(简单几何图像绘制)
简单几何图像一般包含点.直线.矩阵.圆.椭圆.多边形等等.首先认识一下opencv对像素点的定义. 图像的一个像素点有1或者3个值.对灰度图像有一个灰度值,对彩色图像有3个值组成一个像素值.他们表现出 ...
随机推荐
- 洛谷 P1045 麦森数 (快速幂+高精度+算位数骚操作)
这道题太精彩了! 我一开始想直接一波暴力算,然后叫上去只有50分,50分超时 然后我改成万位制提高运算效率,还是只有50分 然后我丧心病狂开long long用10的10次方作为一位,也就是100亿进 ...
- GET和POST请求的核心区别
GET请求具有幂等性,而POST请求没有.
- POJ 1743 Musical Theme 后缀数组 不可重叠最长反复子串
二分长度k 长度大于等于k的分成一组 每组sa最大的和最小的距离大于k 说明可行 #include <cstdio> #include <cstring> #include & ...
- jni java与c++交互返回三维数组jobjectArray
1.在java里创建一个类,在类里添加静态方法调用c++的类库dll,在java里创建要返回数组的函数.在java的main方法里创建返回后的测试方法. package cn.gov.cma.cnn. ...
- m_Orchestrate learning system---二十六、动态给封装好的控件添加属性
m_Orchestrate learning system---二十六.动态给封装好的控件添加属性 一.总结 一句话总结:比如我现在封装好了ueditor控件,我外部调用这个控件,因为要写数据到数据库 ...
- Dictionaries
A dictionary is like a list, but more general. In a list, the indices have to be integers; in a dict ...
- Spring MVC模式示例(采用解耦控制器)
Product package com.mstf.bean; import java.io.Serializable; /** * Product类,封装了一些信息,包含三个属性 * @author ...
- 《剑指offer》包含min函数的栈
一.题目描述 定义栈的数据结构,请在该类型中实现一个能够得到栈最小元素的min函数. 二.输入描述 输入栈 三.输出描述 最小值 四.牛客网提供的框架 class Solution { public: ...
- Win10 + YOLOv3 环境配置,编译,实现目标检测----How to compile YOLOv3 on Windows
其他比较好的参考链接: 环境配置: 环境配置的最终图片列表:https://blog.csdn.net/shanglianlm/article/details/80322718 视频讲解YOLOv1: ...
- 【Codeforces Round #462 (Div. 1) A】 A Twisty Movement
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] ans初值值为a[1..n]中1的个数. 接下来考虑以2为结尾的最长上升子序列的个数. 枚举中间点i. 计算1..i-1中1的个数c ...
is defined by the array M.step[], so that the address of element
, where
, is computed as:
