Mat

OpenCV C++ n-dimensional dense array class

The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel volumes, vector fields, point clouds, tensors, histograms (though, very high-dimensional histograms may be better stored in a SparseMat ).

 

The data layout of the array is defined by the array M.step[], so that the address of element , where , is computed as:

In case of a 2-dimensional array, the above formula is reduced to:

 

Note that M.step[i] >= M.step[i+1] (in fact, M.step[i] >= M.step[i+1]*M.size[i+1] ). This means that 2-dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-plane, and so on. M.step[M.dims-1] is minimal and always equal to the element size M.elemSize() .

 

There are many different ways to create a Mat object.

Use the create(nrows, ncols, type) method or the similar Mat(nrows, ncols, type[, fillValue]) constructor.

// make a 7x7 complex matrix filled with 1+3j.
Mat M(7,7,CV_32FC2,Scalar(1,3));
// and now turn M to a 100x60 15-channel 8-bit matrix.
// The old content will be deallocated
M.create(100,60,CV_8UC(15));

As noted in the introduction to this chapter, create() allocates only a new array when the shape or type of the current array are different from the specified ones.

Create a multi-dimensional array:

// create a 100x100x100 8-bit array
int sz[] = {100, 100, 100};
Mat bigCube(3, sz, CV_8U, Scalar::all(0));

It passes the number of dimensions =1 to the Mat constructor but the created array will be 2-dimensional with the number of columns set to 1. So, Mat::dims is always >= 2 (can also be 0 when the array is empty).

Construct a header for a part of another array. It can be a single row, single column, several rows, several columns, rectangular region in the array (called a minor in algebra) or a diagonal. Such operations are also O(1) because the new header references the same data. You can actually modify a part of the array using this feature, for example:

// add the 5-th row, multiplied by 3 to the 3rd row
M.row(3) = M.row(3) + M.row(5)*3; // now copy the 7-th column to the 1-st column
// M.col(1) = M.col(7); // this will not work
Mat M1 = M.col(1);
M.col(7).copyTo(M1); // create a new 320x240 image
Mat img(Size(320,240),CV_8UC3);
// select a ROI
Mat roi(img, Rect(10,10,100,100));
// fill the ROI with (0,255,0) (which is green in RGB space);
// the original 320x240 image will be modified
roi = Scalar(0,255,0);

Due to the additional datastart and dataend members, it is possible to compute a relative sub-array position in the main container array using locateROI():

Mat A = Mat::eye(10, 10, CV_32S);
// extracts A columns, 1 (inclusive) to 3 (exclusive).
Mat B = A(Range::all(), Range(1, 3));
// extracts B rows, 5 (inclusive) to 9 (exclusive).
// that is, C ~ A(Range(5, 9), Range(1, 3))
Mat C = B(Range(5, 9), Range::all());
Size size; Point ofs;
C.locateROI(size, ofs);
// size will be (width=10,height=10) and the ofs will be (x=1, y=5)

 

Make a header for user-allocated data. It can be useful to do the following:

Process “foreign” data using OpenCV (for example, when you implement a DirectShow* filter or a processing module for gstreamer, and so on). For example:

void process_video_frame(const unsigned char* pixels,
int width, int height, int step)
{
Mat img(height, width, CV_8UC3, pixels, step);
GaussianBlur(img, img, Size(7,7), 1.5, 1.5);
}

Quickly initialize small matrices and/or get a super-fast element access.

double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};
Mat M = Mat(3, 3, CV_64F, m).inv();

 

Partial yet very common cases of this user-allocated data case are conversions from CvMat and IplImage to Mat. For this purpose, there are special constructors taking pointers to CvMat or IplImage and the optional flag indicating whether to copy the data or not.

Backward conversion from Mat to CvMat or IplImage is provided via cast operators Mat::operator CvMat()const and Mat::operator IplImage(). The operators do NOT copy the data.

IplImage* img = cvLoadImage("greatwave.jpg", 1);
Mat mtx(img); // convert IplImage* -> Mat
CvMat oldmat = mtx; // convert Mat -> CvMat
CV_Assert(oldmat.cols == img->width && oldmat.rows == img->height &&
oldmat.data.ptr == (uchar*)img->imageData && oldmat.step == img->widthStep);

 

Use MATLAB-style array initializers, zeros(), ones(), eye(), for example:

// create a double-precision identity martix and add it to M.
M += Mat::eye(M.rows, M.cols, CV_64F);

 

 

Use a comma-separated initializer:

// create a 3x3 double-precision identity matrix
Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);

 

// compute sum of positive matrix elements
// (assuming that M isa double-precision matrix)
double sum=0;
for(int i = 0; i < M.rows; i++)
{
const double* Mi = M.ptr<double>(i);
for(int j = 0; j < M.cols; j++)
sum += std::max(Mi[j], 0.);
}

 

// compute the sum of positive matrix elements, optimized variant
double sum=0;
int cols = M.cols, rows = M.rows;
if(M.isContinuous())
{
cols *= rows;
rows = 1;
}
for(int i = 0; i < rows; i++)
{
const double* Mi = M.ptr<double>(i);
for(int j = 0; j < cols; j++)
sum += std::max(Mi[j], 0.);
}

 

// compute sum of positive matrix elements, iterator-based variant
double sum=0;
MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>();
for(; it != it_end; ++it)
sum += std::max(*it, 0.);

 

Mat::row

Creates a matrix header for the specified matrix row.

The method makes a new header for the specified matrix row and returns it. This is an O(1) operation, regardless of the matrix size. The underlying data of the new matrix is shared with the original matrix.

Mat::rowRange

Creates a matrix header for the specified row span.

The method makes a new header for the specified row span of the matrix. Similarly to Mat::row() and Mat::col() , this is an O(1) operation.

Mat::copyTo

Copies the matrix to another one.

The method copies the matrix data to another matrix. Before copying the data, the method invokes

m.create(this->size(), this->type());

so that the destination matrix is reallocated if needed. While m.copyTo(m); works flawlessly, the function does not handle the case of a partial overlap between the source and the destination matrices.

When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, the newly allocated matrix is initialized with all zeros before copying the data.

 

 

Mat 类的熟悉程度决定着对OpenCV的操纵能力,必须花时间掌握好~~

OPENCV(2) —— Basic Structures(二)的更多相关文章

  1. OPENCV(2) —— Basic Structures(一)

    DataType A primitive OpenCV data type is one of unsigned char, bool,signed char, unsigned short, sig ...

  2. opencv学习笔记(二)寻找轮廓

    opencv学习笔记(二)寻找轮廓 opencv中使用findContours函数来查找轮廓,这个函数的原型为: void findContours(InputOutputArray image, O ...

  3. HTTP认证之基本认证——Basic(二)

    导航 HTTP认证之基本认证--Basic(一) HTTP认证之基本认证--Basic(二) HTTP认证之摘要认证--Digest(一) HTTP认证之摘要认证--Digest(二) 在HTTP认证 ...

  4. OpenCV中Mat与二维数组之间的转换

    ---恢复内容开始--- 在OpenCV中将Mat(二维)与二维数组相对应,即将Mat中的每个像素值赋给一个二维数组. 全部代码如下: #include <iostream> #inclu ...

  5. 基于Opencv识别,矫正二维码(C++)

    参考链接 [ 基于opencv 识别.定位二维码 (c++版) ](https://www.cnblogs.com/yuanchenhui/p/opencv_qr.html) OpenCV4.0.0二 ...

  6. OpenCV使用FindContours进行二维码定位

    我使用过FindContours,而且知道有能够直接寻找联通区域的函数.但是我使用的大多只是"最大轮廓"或者"轮廓数目"这些数据.其实轮廓还有另一个很重要的性质 ...

  7. opencv探索之路(十二):感兴趣区域ROI和logo添加技术

    在图像处理领域,有一个非常重要的名词ROI. 什么是ROI? 它的英文全称是Region Of Interest,对应的中文解释就是感兴趣区域. 感兴趣区域,就是我们从图像中选择一个图像区域,这个区域 ...

  8. Python+OpenCV图像处理(十二)—— 图像梯度

    简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值, ...

  9. Python下opencv使用笔记(二)(简单几何图像绘制)

    简单几何图像一般包含点.直线.矩阵.圆.椭圆.多边形等等.首先认识一下opencv对像素点的定义. 图像的一个像素点有1或者3个值.对灰度图像有一个灰度值,对彩色图像有3个值组成一个像素值.他们表现出 ...

随机推荐

  1. 紫书 习题 11-10 UVa 12264 (二分答案+最大流)

    书上写的是UVa 12011, 实际上是 12264 参考了https://blog.csdn.net/xl2015190026/article/details/51902823 这道题就是求出一种最 ...

  2. 2015 Multi-University Training Contest 2 hdu 5308 I Wanna Become A 24-Point Master

    I Wanna Become A 24-Point Master Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 ...

  3. Eclipse中JSON文件报错,如何解决?

    eclipse里面的JSON文件老报错,虽然可以正常运行,但红X看起来就是不爽,怎么解决呢? 这是因为Eclipse认为JSON文件不需要注释,所以报的编译错误,我们可以通过Eclipse的设置把它的 ...

  4. httpd: Could not reliably determine the server&#39;s fully qualified domain name

    [root@luozhonghua sbin]# service httpd start Starting httpd: httpd: apr_sockaddr_info_get() failed f ...

  5. angularjs 标签指令

    <!DOCTYPE HTML> <html ng-app="myApp"> <head> <meta http-equiv="C ...

  6. 使用tinyxml2库解析xml

    tinyxml2简介 tinyxml2是c++编写的轻量级的xml解析器,而且是开放源代码的,在一些开源的游戏引擎中用的比较多.源码托管在github上. 源码地址:https://github.co ...

  7. Android textView开头空两格问题,排版缩进2个汉字

    一般为了排版,textView中字符段落开头一般都会空两格显示,如下图 但是如果你靠敲击空格来解决那就错了,那样在不同的屏幕上显示会差异,完美的解决方法是用转义字符”\t“,在段首加\t\t就解决.加 ...

  8. MySQL5.6主从复制方案

    MySQL5.6主从复制方案 1.主备服务器操作 环境:CentOS 6.3/6.4 最小化缺省安装,配置好网卡. 安装MySQL前,确认Internet连接正常,以便下载安装文件. # 新增用户组 ...

  9. 推荐《SQL基础教程(第2版)》中文PDF+源代码+习题答案

    我认为<SQL基础教程(第2版)>非常适合数据库学习的初学者.论述的角度是读者的角度,会换位思考到读者在看到这一段时候会发出怎样的疑问,非常难得:原始数据的例题只有一道,但是可以反复从不同 ...

  10. zabbix 使用自带模板监控mysql

    1.这里可以采用zabbix自带的mysql模版,但是也需要在mysql服务器上准备获取mysql status的脚本chk_mysql.sh,zabbix通过调用这个脚本来获取mysql的运行信息. ...