Mat

OpenCV C++ n-dimensional dense array class

The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel volumes, vector fields, point clouds, tensors, histograms (though, very high-dimensional histograms may be better stored in a SparseMat ).

 

The data layout of the array is defined by the array M.step[], so that the address of element , where , is computed as:

In case of a 2-dimensional array, the above formula is reduced to:

 

Note that M.step[i] >= M.step[i+1] (in fact, M.step[i] >= M.step[i+1]*M.size[i+1] ). This means that 2-dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-plane, and so on. M.step[M.dims-1] is minimal and always equal to the element size M.elemSize() .

 

There are many different ways to create a Mat object.

Use the create(nrows, ncols, type) method or the similar Mat(nrows, ncols, type[, fillValue]) constructor.

// make a 7x7 complex matrix filled with 1+3j.
Mat M(7,7,CV_32FC2,Scalar(1,3));
// and now turn M to a 100x60 15-channel 8-bit matrix.
// The old content will be deallocated
M.create(100,60,CV_8UC(15));

As noted in the introduction to this chapter, create() allocates only a new array when the shape or type of the current array are different from the specified ones.

Create a multi-dimensional array:

// create a 100x100x100 8-bit array
int sz[] = {100, 100, 100};
Mat bigCube(3, sz, CV_8U, Scalar::all(0));

It passes the number of dimensions =1 to the Mat constructor but the created array will be 2-dimensional with the number of columns set to 1. So, Mat::dims is always >= 2 (can also be 0 when the array is empty).

Construct a header for a part of another array. It can be a single row, single column, several rows, several columns, rectangular region in the array (called a minor in algebra) or a diagonal. Such operations are also O(1) because the new header references the same data. You can actually modify a part of the array using this feature, for example:

// add the 5-th row, multiplied by 3 to the 3rd row
M.row(3) = M.row(3) + M.row(5)*3; // now copy the 7-th column to the 1-st column
// M.col(1) = M.col(7); // this will not work
Mat M1 = M.col(1);
M.col(7).copyTo(M1); // create a new 320x240 image
Mat img(Size(320,240),CV_8UC3);
// select a ROI
Mat roi(img, Rect(10,10,100,100));
// fill the ROI with (0,255,0) (which is green in RGB space);
// the original 320x240 image will be modified
roi = Scalar(0,255,0);

Due to the additional datastart and dataend members, it is possible to compute a relative sub-array position in the main container array using locateROI():

Mat A = Mat::eye(10, 10, CV_32S);
// extracts A columns, 1 (inclusive) to 3 (exclusive).
Mat B = A(Range::all(), Range(1, 3));
// extracts B rows, 5 (inclusive) to 9 (exclusive).
// that is, C ~ A(Range(5, 9), Range(1, 3))
Mat C = B(Range(5, 9), Range::all());
Size size; Point ofs;
C.locateROI(size, ofs);
// size will be (width=10,height=10) and the ofs will be (x=1, y=5)

 

Make a header for user-allocated data. It can be useful to do the following:

Process “foreign” data using OpenCV (for example, when you implement a DirectShow* filter or a processing module for gstreamer, and so on). For example:

void process_video_frame(const unsigned char* pixels,
int width, int height, int step)
{
Mat img(height, width, CV_8UC3, pixels, step);
GaussianBlur(img, img, Size(7,7), 1.5, 1.5);
}

Quickly initialize small matrices and/or get a super-fast element access.

double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};
Mat M = Mat(3, 3, CV_64F, m).inv();

 

Partial yet very common cases of this user-allocated data case are conversions from CvMat and IplImage to Mat. For this purpose, there are special constructors taking pointers to CvMat or IplImage and the optional flag indicating whether to copy the data or not.

Backward conversion from Mat to CvMat or IplImage is provided via cast operators Mat::operator CvMat()const and Mat::operator IplImage(). The operators do NOT copy the data.

IplImage* img = cvLoadImage("greatwave.jpg", 1);
Mat mtx(img); // convert IplImage* -> Mat
CvMat oldmat = mtx; // convert Mat -> CvMat
CV_Assert(oldmat.cols == img->width && oldmat.rows == img->height &&
oldmat.data.ptr == (uchar*)img->imageData && oldmat.step == img->widthStep);

 

Use MATLAB-style array initializers, zeros(), ones(), eye(), for example:

// create a double-precision identity martix and add it to M.
M += Mat::eye(M.rows, M.cols, CV_64F);

 

 

Use a comma-separated initializer:

// create a 3x3 double-precision identity matrix
Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);

 

// compute sum of positive matrix elements
// (assuming that M isa double-precision matrix)
double sum=0;
for(int i = 0; i < M.rows; i++)
{
const double* Mi = M.ptr<double>(i);
for(int j = 0; j < M.cols; j++)
sum += std::max(Mi[j], 0.);
}

 

// compute the sum of positive matrix elements, optimized variant
double sum=0;
int cols = M.cols, rows = M.rows;
if(M.isContinuous())
{
cols *= rows;
rows = 1;
}
for(int i = 0; i < rows; i++)
{
const double* Mi = M.ptr<double>(i);
for(int j = 0; j < cols; j++)
sum += std::max(Mi[j], 0.);
}

 

// compute sum of positive matrix elements, iterator-based variant
double sum=0;
MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>();
for(; it != it_end; ++it)
sum += std::max(*it, 0.);

 

Mat::row

Creates a matrix header for the specified matrix row.

The method makes a new header for the specified matrix row and returns it. This is an O(1) operation, regardless of the matrix size. The underlying data of the new matrix is shared with the original matrix.

Mat::rowRange

Creates a matrix header for the specified row span.

The method makes a new header for the specified row span of the matrix. Similarly to Mat::row() and Mat::col() , this is an O(1) operation.

Mat::copyTo

Copies the matrix to another one.

The method copies the matrix data to another matrix. Before copying the data, the method invokes

m.create(this->size(), this->type());

so that the destination matrix is reallocated if needed. While m.copyTo(m); works flawlessly, the function does not handle the case of a partial overlap between the source and the destination matrices.

When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, the newly allocated matrix is initialized with all zeros before copying the data.

 

 

Mat 类的熟悉程度决定着对OpenCV的操纵能力,必须花时间掌握好~~

OPENCV(2) —— Basic Structures(二)的更多相关文章

  1. OPENCV(2) —— Basic Structures(一)

    DataType A primitive OpenCV data type is one of unsigned char, bool,signed char, unsigned short, sig ...

  2. opencv学习笔记(二)寻找轮廓

    opencv学习笔记(二)寻找轮廓 opencv中使用findContours函数来查找轮廓,这个函数的原型为: void findContours(InputOutputArray image, O ...

  3. HTTP认证之基本认证——Basic(二)

    导航 HTTP认证之基本认证--Basic(一) HTTP认证之基本认证--Basic(二) HTTP认证之摘要认证--Digest(一) HTTP认证之摘要认证--Digest(二) 在HTTP认证 ...

  4. OpenCV中Mat与二维数组之间的转换

    ---恢复内容开始--- 在OpenCV中将Mat(二维)与二维数组相对应,即将Mat中的每个像素值赋给一个二维数组. 全部代码如下: #include <iostream> #inclu ...

  5. 基于Opencv识别,矫正二维码(C++)

    参考链接 [ 基于opencv 识别.定位二维码 (c++版) ](https://www.cnblogs.com/yuanchenhui/p/opencv_qr.html) OpenCV4.0.0二 ...

  6. OpenCV使用FindContours进行二维码定位

    我使用过FindContours,而且知道有能够直接寻找联通区域的函数.但是我使用的大多只是"最大轮廓"或者"轮廓数目"这些数据.其实轮廓还有另一个很重要的性质 ...

  7. opencv探索之路(十二):感兴趣区域ROI和logo添加技术

    在图像处理领域,有一个非常重要的名词ROI. 什么是ROI? 它的英文全称是Region Of Interest,对应的中文解释就是感兴趣区域. 感兴趣区域,就是我们从图像中选择一个图像区域,这个区域 ...

  8. Python+OpenCV图像处理(十二)—— 图像梯度

    简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值, ...

  9. Python下opencv使用笔记(二)(简单几何图像绘制)

    简单几何图像一般包含点.直线.矩阵.圆.椭圆.多边形等等.首先认识一下opencv对像素点的定义. 图像的一个像素点有1或者3个值.对灰度图像有一个灰度值,对彩色图像有3个值组成一个像素值.他们表现出 ...

随机推荐

  1. OpenJDK源码研究笔记(三)-RandomAccess等标记接口的作用

    标识接口是没有任何方法和属性的接口. 它仅仅表明它的类属于一个特定的类型,供其他代码来测试允许做一些事情. 下面来看一个标记接口RandomAccess. public interface Rando ...

  2. C++容器(五):set类型

    set类型 map容器是键-值对的集合,好比以任命为键的地址和电话号码.而set容器只是单纯的键的集合.当只想知道一个值是否存在时,使用set容器是最适合. 使用set容器必须包含set头文件: #i ...

  3. 三 概要模式 3) MR计数器计数 。无 reduce 计数

    计数器模式讲解:         先讲一下,就是说只用 Map 阶段  不需要 Reduce . 也就是说去掉了中间输出,而是Map 直接输出结果.大大提高了 MR 的效率且节省了 MR 中间输出读入 ...

  4. css 清楚浮动的8种方式

    清除浮动是每个 web前台设计师必须掌握的机能. css清除浮动大全,共8种方法. 浮动会使当前标签产生向上浮的效果,同一时候会影响到前后标签.父级标签的位置及 width height 属性.并且相 ...

  5. LeetCode SQL

    SQL查询练习一(From LeetCode) 1 select name,population,area 2 from World 3 where area > 3000000 or popu ...

  6. QuerySet和对象的例子 个人记录

    import osif __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE&quo ...

  7. Oracle 建表

    -- Create table create table STUDENT ( sno ) not null, sname ) not null, ssex ) not null, sbirthday ...

  8. Python多版本情况下四种快速进入交互式命令行的操作技巧

    因为工作需求或者学习需要等原因,部分小伙伴的电脑中同时安装了Python2和Python3,相信在Python多版本的切换中常常会遇到Python傻傻分不清楚的情况,今天小编整理了四个操作技巧,以帮助 ...

  9. vue中的三级联动

    1.template里面的内容 2.js里面的内容 3.函数怎么写? 这是一个省市区的三级联动,首先你要传递中国的id,这样才能获取到所有的省份,所以在vue的项目中,我需要发一次进页面就请求(来得到 ...

  10. 隐藏div,文本框角圆滑,消除外边框

    #div_1 /*将div设置完成,并且隐藏,当需要的时候对其属性值进行修改*/ { height: 36px; width: 1099px; background-color: #F0DFDF; m ...