B1257 [CQOI2007]余数之和 数学,分块
这个题想明白之后很好做,但是不好想。我根本没想出来,上网看了一下才知道怎么做。。。
这个题其实得数是一个等差数列,然后一点点求和就行了。
上次NOIP就是没看出来规律,这次又是,下次先打表找规律!!!

题干:
Description
给出正整数n和k,计算j(n, k)=k mod + k mod + k mod + … + k mod n的值
其中k mod i表示k除以i的余数。
例如j(, )= mod + mod + mod + mod + mod =++++=
Input
输入仅一行,包含两个整数n, k。
<=n ,k<=^ Output 输出仅一行,即j(n, k)。
Sample Input Sample Output
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(int i = a;i <= n;i++)
#define lv(i,a,n) for(int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
ll n,k,l,r,ans = ;
int main()
{
read(n);read(k);
for(int i = ;i <= n;i = r + )
{
ll d = k / i;
l = k / (d + ) + ;
r = d ? k / d : n;
r = r > n ? n : r;
ans += (r - l + ) * (k - d * l + k - d * r) / ;
}
printf("%lld",ans);
return ;
}
B1257 [CQOI2007]余数之和 数学,分块的更多相关文章
- bzoj 1257: [CQOI2007]余数之和 (数学+分块)
Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5 ...
- Bzoj 1257 [CQOI2007]余数之和 (整除分块)
Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...
- bzoj1257[CQOI2007]余数之和(除法分块)
1257: [CQOI2007]余数之和 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 6117 Solved: 2949[Submit][Statu ...
- bzoj1257: [CQOI2007]余数之和 整除分块
题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod ...
- BZOJ1257: [CQOI2007]余数之和——整除分块
题意 求 $\sum _{i=1}^n k \ mod \ i$($1\leq n,k\leq 10^9$). 分析 数据范围这么大 $O(n)$ 的复杂度也挺不住啊 根据取模的意义,$k \ mod ...
- BZOJ1257 [CQOI2007]余数之和 (数论分块)
题意: 给定n, k,求$\displaystyle \sum_{i=1}^nk\;mod\;i$ n,k<=1e9 思路: 先转化为$\displaystyle \sum_{i=1}^n(k- ...
- bzoj 1257 [CQOI2007]余数之和——数论分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( n\%i = n - \left \lfloor n/i \right \rfl ...
- BZOJ 1257 [CQOI2007]余数之和 数学
都不知道说什么好...咕咕到现在.. 求:$\sum_{i=1}^n \space k\space mod \space i$ 即求:$n*k-\sum_{i=1}^n\space \lfloor \ ...
- BZOJ_1257_ [CQOI2007]余数之和sum_数学
BZOJ_1257_ [CQOI2007]余数之和sum_数学 题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值. 分 ...
随机推荐
- Angular——基本使用
基本介绍 1.AngularJS是一个框架(诸多类库的集合)以数据和逻辑做为驱动(核心). 2.AngularJS有着诸多特性,最为核心的是:模块化.双向数据绑定.语义化标签.依赖注入等. 模块化 使 ...
- 4th 循环结构概述和for语句的格式及其使用
04.01_Java语言基础(循环结构概述和for语句的格式及其使用) A:循环结构的分类 for,while,do...while B:循环结构for语句的格式: for(初始化表达式;条件表达式; ...
- 【技术累积】【点】【java】【22】UUID
基础概念&使用 UUID是Universally Unique Identifier的缩写,它是在一定的范围内(从特定的名字空间到全球)唯一的机器生成的标识符. 说白了就是个唯一键,只不过到处 ...
- Android之Fragment的优点和作用
一:什么是Fragment 碎片.片段.其目的是为了解决不同屏幕分辩率的动态和灵活UI设计.大屏幕如平板小屏幕如手机,平板电脑的设计使得其有更多的空间来放更多的UI组件,而多出来的空间存放UI使其会产 ...
- Python 之mysql类封装
import pymysql class MysqlHelper(object): conn = None def __init__(self, host, username, password, d ...
- DDX DDV 用法
DDX:Dialog Data Exchange 如果使用DDX机制,一般会在OnInitDialog消息处理函数或Dialog构造函数中,为对话框对象的成员变量设置了初始值.在对话框显示前,框架的D ...
- CF17E Palisection (回文自动机+DP)
题目传送门 题目大意:给你一个字符串,让你求出有多少对相交的回文子串 啊啊啊啊降智了,我怎么又忘了正难则反! 求相交会很难搞.把问题转化成求互不相交的回文子串再减一下就行了 先利用$PAM$求出以每个 ...
- [luogu3155 CQOI2009] 叶子的染色(树形dp)
传送门 Solution 十分简单的树形dpQwQ,转移关系:父亲染了儿子不用染 只需要确定根就是简单树形dp,而其实根可以随便取一个非叶子节点 可以分情况讨论发现答案并不会改变 Code //By ...
- Linux:安装CentOS 6.x和CentOS 7.x
1,准备镜像,这里到阿里云镜像网站下载 https://opsx.alibaba.com/mirror 2,安装CentOS6.10 打开vmware workstation--> 典型--&g ...
- jQuery练习:表单模态框
代码:基于事件冒泡原理和事件委托 <!DOCTYPE html> <html lang="zh-cn"> <head> <meta cha ...