POJ 1973

这道题以前做过的。今儿重做一次。由于每个程序员要么做A,要么做B,可以联想到0/1背包(谢谢N巨)。这样,可以设状态

dp[i][j]为i个程序员做j个A项目同时,最多可做多少个B项目。枚举最后一个程序员做多少个A项目进行转移(0/1)。

dp[i][j]=max{dp[i-1][k]+(time-(j-k)*a[i])/b[i]}。于是,二分时间time进行判定即可。

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std; int dp[110][110];
int a[110],b[110];
int n,m; bool slove(int time){
memset(dp,-1,sizeof(dp));
for(int i=0;i<=m;i++){
if(time-i*a[1]<0) continue;
dp[1][i]=(time-i*a[1])/b[1];
}
for(int i=2;i<=n;i++){
for(int j=0;j<=m;j++){
for(int k=0;k<=j;k++){
if(dp[i-1][k]<0||time-(j-k)*a[i]<0) continue;
dp[i][j]=max(dp[i][j],dp[i-1][k]+(time-(j-k)*a[i])/b[i]);
}
}
}
//bool flag=false;
for(int i=0;i<=n;i++){
if(dp[i][m]>=m) return true;
}
return false;
} int main(){
int T;
scanf("%d",&T);
while(T--){
int l=0,r=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d%d",&a[i],&b[i]);
r+=(a[i]*m+b[i]*m);
}
int ans=100000000;
while(l<=r){
int mid=(l+r)>>1;
if(slove(mid)){
ans=mid;
r=mid-1;
}
else l=mid+1;
}
printf("%d\n",ans);
}
return 0;
}

  

POJ 1180

开始时设了二维的数组。一看范围,就知道不行了。。

可以很容易就看出是DP了。可以倒过来设状态dp[i]表示加入i任务,从i任务到n任务完成所需要的时间。

dp[i]=min{dp[j]+(s+tsum[i]-tsum[j])*fsum[i]}//i之后的第一个分组是从j开始,枚举。

这样还不足够。可以用斜率来优化。假设j<p。如果对于决策i,j更优于p,则有dp[j]+(s+tsum[i]-tsum[j])*fsum[i]<dp[p]+(s+tsum[i]-tsum[j])*fsum[i]。化简有

dp[j]-dp[p]<(tsum[j]-tsum[p])*fsum[i]。可以看到是斜率k=g[j,p]=(dp[j]-dp[p])/(tsum[j]-tsum[p])<fsum[i],j优于p。

对于k<j<p。如果有g[k,j]<g[j,p]。则j必定是可以不要的。因为当g[k,j]<s时,明显k优于j。否则g[k,j]>s,有s<g[k,j]<g[j,p]。说明,k不优于j,j不优于p。

于是,j是可以不要的。

斜率减少。因而可以去掉j。在这里,我们要维护的是斜率的下凸,如:g[k,j]>g[j,p]。这样,对于j点,如果j点可选,则其前面的点均可以不需要了。因为斜率是下凸,会直到某个斜率大于fsum[i],才会选到最优。

用一个单调队列维护即可。

#include <iostream>
#include <cstdio>
#include <algorithm>
#define LL __int64
using namespace std; int t[10010],f[10010];
LL ts[10010],fs[10010];
int que[10010],head,tail;
LL dp[10010]; int main(){
int n,s;
while(scanf("%d",&n)!=EOF){
head=tail=0;
scanf("%d",&s);
for(int i=1;i<=n;i++){
scanf("%d%d",&t[i],&f[i]);
}
dp[n+1]=0; ts[n+1]=fs[n+1]=0;
for(int i=n;i>=1;i--){
ts[i]=(ts[i+1]+t[i]);
fs[i]=(fs[i+1]+f[i]);
}
head=tail=0;
dp[n+1]=0;
que[tail++]=n+1;
dp[n]=(s+ts[n])*fs[n];
que[tail++]=n;
for(int i=n-1;i>=1;i--){
while(head<tail-1&&dp[que[head+1]]-dp[que[head]]<=(ts[que[head+1]]-ts[que[head]])*fs[i])
head++;
dp[i]=dp[que[head]]+(s+ts[i]-ts[que[head]])*fs[i];
while(head+1<tail&&(dp[i]-dp[que[tail-1]])*(ts[que[tail-1]]-ts[que[tail-2]])<=(dp[que[tail-1]]-dp[que[tail-2]])*(ts[i]-ts[que[tail-1]]))
tail--;
que[tail++]=i;
}
printf("%I64d\n",dp[1]);
} return 0;
}

  

任务调度分配题两道 POJ 1973 POJ 1180(斜率优化复习)的更多相关文章

  1. POJ P2318 TOYS与POJ P1269 Intersecting Lines——计算几何入门题两道

    rt,计算几何入门: TOYS Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...

  2. 三分题两道:lightoj1146 Closest Distance、lightoj1240 Point Segment Distance (3D)

    lightoj1146 Two men are moving concurrently, one man is moving from A to B and other man is moving f ...

  3. poj 1180 斜率优化dp

    这个题目要是顺着dp的话很难做,但是倒着推就很容易退出比较简单的关系式了. dp[i]=min(dp[u]+(sum[u-1]-sum[i-1]+s)*f[i]);dp[i]代表从i到结尾需要花费的代 ...

  4. POJ 3709 K-Anonymous Sequence - 斜率优化dp

    描述 给定一个数列 $a$, 分成若干段,每段至少有$k$个数, 将每段中的数减少至所有数都相同, 求最小的变化量 题解 易得到状态转移方程 $F_i = \min(F_j  + sum_i - su ...

  5. POJ 1180 斜率优化DP(单调队列)

    Batch Scheduling Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4347   Accepted: 1992 ...

  6. 穷举(四):POJ上的两道穷举例题POJ 1411和POJ 1753

    下面给出两道POJ上的问题,看如何用穷举法解决. [例9]Calling Extraterrestrial Intelligence Again(POJ 1411) Description A mes ...

  7. 『ACM C++』Virtual Judge | 两道基础题 - The Architect Omar && Malek and Summer Semester

    这几天一直在宿舍跑PY模型,学校的ACM寒假集训我也没去成,来学校的时候已经18号了,突然加进去也就上一天然后排位赛了,没学什么就去打怕是要被虐成渣,今天开学前一天,看到最后有一场大的排位赛,就上去试 ...

  8. 两道人数多,课程少,query多的题

    #每天进步一点点# 来两道很相似的题目~ (智商啊智商.....) hihoCoder #1236:Scores (简单的分桶法+bitset) 2015 Beijing Online的最后一题.题目 ...

  9. FJOI2020 的两道组合计数题

    最近细品了 FJOI2020 的两道计数题,感觉抛开数据范围不清还卡常不谈里面的组合计数技巧还是挺不错的.由于这两道题都基于卡特兰数的拓展,所以我们把它们一并研究掉. 首先是 D1T3 ,先给出简要题 ...

随机推荐

  1. 零基础如何学习Java和web前端

    今天说一下零基础到底能不能学习Java,为什么有的人说学不了呢,那么接下来我为大家揭晓,零基础到底适合不适合学习Java. 零基础学习Java的途径第一个就是看视频,然后就是看书,或者在线下报个培训班 ...

  2. 阿里邮箱绑定Foxmail失败的解决办法

    收件服务器地址: POP 服务器地址:pop3.mxhichina.com 端口110,SSL 加密端口995 或 IMAP 服务器地址:imap.mxhichina.com 端口143,SSL 加密 ...

  3. 在已有spring的基础上集成hibernate

    1.导入hibernate的包和spring的包    hibernate3.hibernate-jpa-2.0-api-.必须的包,log4j,log4j配置文件  1.1 导入Spring的依赖包 ...

  4. 使用 RxJava 的正确姿势

    最近在使用 RxJava 时遇到了一些比较诡异的问题,排查的过程中做了点研究,发现平时大家的用法多多少少都有些问题.有些地方存在隐患,有些用法不够简练,我把这些问题简单做一下分类和总结,供大家参考. ...

  5. 如何修改wampserver中mysql中字符编码的解决方案

    因为我用的一般都是utf8,所以有必要改一下: 打开mysql控制台,输入密码登录之后,执行命令: show variables like ‘%char%’; 注意引号的中英文格式以及最后面的分号不要 ...

  6. 在VirtualBox上安装Solaris 10全教程(包括下载)

    您可以在博文的最下方留下评价, 也可以点击左边的 关注 来关注我的博客的最新动态. 如果文章内容对您有帮助, 不要忘记点击右下角的 推荐 来支持一下喔 如果您对博文有任何疑问, 可以通过评论或发邮件的 ...

  7. JS高级——原型链

    构造函数 构造函数是特殊的函数,里面没有returen返回值 new的过程中,会自动将对象返回,不需要return new的过程中,会执行函数中的代码,会将创建的对象赋值给构造函数中的this 基本概 ...

  8. JS——事件冒泡与捕获

    事件冒泡与事件捕获 1.冒泡:addEventListener("click",fn,false)或者addEventListener("click",fn): ...

  9. php入门学习笔记

    学习笔记[6.5-6.13] 1.常用命令 打开数据库格式: mysql -h主机地址 -u用户名 -p 重启nginx:sudo /etc/init.d/nginx restart或者service ...

  10. 为.net mvc core 启用 https

    引用nuget包:Microsoft.AspNetCore.Server.Kestrel.Https这是一个服务器测试ssl密钥,密码如代码里面所示 using System; using Syste ...