PAT_A1136#A Delayed Palindrome
Source:
Description:
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 with 0 for all i and ak>0. Then N is palindromic if and only if ai=ak−i for all i. Zero is written 0 and is also palindromic by definition.
Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )
Given any positive integer, you are supposed to find its paired palindromic number.
Input Specification:
Each input file contains one test case which gives a positive integer no more than 1000 digits.
Output Specification:
For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:
A + B = C
where
Ais the original number,Bis the reversedA, andCis their sum.Astarts being the input number, and this process ends untilCbecomes a palindromic number -- in this case we print in the last lineC is a palindromic number.; or if a palindromic number cannot be found in 10 iterations, printNot found in 10 iterations.instead.
Sample Input 1:
97152
Sample Output 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
Sample Input 2:
196
Sample Output 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
Keys:
- 快乐模拟
Attention:
- under algorithm, reverse(s.begin(),s.end());
Code:
/*
Data: 2019-08-07 19:32:34
Problem: PAT_A1136#A Delayed Palindrome
AC: 17:12 题目大意:
非回文数转化为回文数;
while(! palindrome){
1.Reverse
2.add
输入:
给一个不超过1000位的正整数
输出:
给出每次循环的加法操作,最多10次循环
*/
#include<cstdio>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std; bool IsPali(string s)
{
int len=s.size();
for(int i=; i<len/; i++)
if(s[i] != s[len--i])
return false;
return true;
} string Func(string s1)
{
string s,s2=s1;
reverse(s2.begin(),s2.end());
int carry=;
for(int i=; i<s1.size(); i++)
{
carry += (s1[i]-''+s2[i]-'');
s.insert(s.end(),''+carry%);
carry /= ;
}
while(carry!=)
{
s.insert(s.end(),''+carry%);
carry /= ;
}
reverse(s.begin(),s.end());
printf("%s + %s = %s\n", s1.c_str(),s2.c_str(),s.c_str());
return s;
} int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("Test.txt", "r", stdin);
#endif // ONLINE_JUDGE string s;
cin >> s;
for(int i=; i<; i++)
{
if(IsPali(s))
{
printf("%s is a palindromic number.\n", s.c_str());
s.clear();break;
}
s = Func(s);
}
if(s.size())
printf("Not found in 10 iterations."); return ;
}
PAT_A1136#A Delayed Palindrome的更多相关文章
- PAT1136:A Delayed Palindrome
1136. A Delayed Palindrome (20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...
- PAT 1136 A Delayed Palindrome
1136 A Delayed Palindrome (20 分) Consider a positive integer N written in standard notation with k ...
- A1136. Delayed Palindrome
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 ...
- PAT A1136 A Delayed Palindrome (20 分)——回文,大整数
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 ...
- 1136 A Delayed Palindrome (20 分)
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 ...
- PAT 1136 A Delayed Palindrome[简单]
1136 A Delayed Palindrome (20 分) Consider a positive integer N written in standard notation with k+1 ...
- 1136 A Delayed Palindrome (20 分)
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 ...
- pat 1136 A Delayed Palindrome(20 分)
1136 A Delayed Palindrome(20 分) Consider a positive integer N written in standard notation with k+1 ...
- PAT-1136(A Delayed Palindrome)字符串处理+字符串和数字间的转换
A Delayed Palindrome PAT-1136 我这里将数字转换为字符串使用的是stringstream字符串流 扩充:将字符串转换为数字可以使用stoi函数,函数头为cstdlib #i ...
随机推荐
- N天学习一个linux命令之scp
用途 通过ssh通道,不同主机之间复制文件 用法 scp [options] [user@host:]file1 [user2@host2:]file2 常用参数 -1使用 ssh 1协议 -2使用s ...
- java 执行可执行文件时提示“could not find or load main class ”的问题
- volatile非原子性示例
volatile非原子性示例 学习了:<Java多线程编程核心技术>高洪岩 著 Page124 package com.stono.thread2.page124_2; public cl ...
- 4.非关系型数据库(Nosql)之mongodb:普通索引,唯一索引
一:普通索引 1创建一个新的数据库 > use toto; switched to db toto > show dbs; admin (empty) local 0.078GB & ...
- SegmentFault 巨献 1024 程序猿游戏「红岸的呼唤」第一天任务攻略
今天一不小心在微博上看到了SegmentFault的一条微博: 眼看今天就要过去了,那在这里说一下我的解题过程(事实上大家都知道了吧-=). 高速传送门:http://segmentfault.com ...
- linux面试之--堆、栈、自由存储区、全局/静态存储区和常量存储区
栈,就是那些由编译器在须要的时候分配,在不须要的时候自己主动清除的变量的存储区.里面的变量一般是局部变量.函数參数等.在一个进程中.位于用户虚拟地址空间顶部的是用户栈,编译器用它来实现函数的调用.和堆 ...
- 自适应阈值分割—大津法(OTSU算法)C++实现
大津法是一种图像灰度自适应的阈值分割算法,是1979年由日本学者大津提出,并由他的名字命名的.大津法按照图像上灰度值的分布,将图像分成背景和前景两部分看待,前景就是我们要按照阈值分割出来的部分.背景和 ...
- iOS开发之KVC全解
一 KVC的基本概念 1.KVC是Key Value Coding的缩写,意思是键值编码. 在iOS中,提供了一种方法通过使用属性的名称(也就是Key)来间接访问对象属性的方法,这个方法可以不通过g ...
- python多线程,限制线程数
#encoding:utf8 import threading import time data = 0 def func(sleeptime): global data print threadin ...
- ecshop类的解析1
前面写了一下我理解的ecshop数据库表,现在看一下我理解的ecshop的类. ecshop类,ECS是一个基础类,它的取得域名的函数我感觉是比较不错的. function get_domain() ...