Source:

PAT_A1136 A Delayed Palindrome (20 分)

Description:

Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ with 0 for all i and a​k​​>0. Then N is palindromic if and only if a​i​​=a​k−i​​ for all i. Zero is written 0 and is also palindromic by definition.

Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )

Given any positive integer, you are supposed to find its paired palindromic number.

Input Specification:

Each input file contains one test case which gives a positive integer no more than 1000 digits.

Output Specification:

For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:

A + B = C

where A is the original number, B is the reversed A, and C is their sum. A starts being the input number, and this process ends until C becomes a palindromic number -- in this case we print in the last line C is a palindromic number.; or if a palindromic number cannot be found in 10 iterations, print Not found in 10 iterations. instead.

Sample Input 1:

97152

Sample Output 1:

97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.

Sample Input 2:

196

Sample Output 2:

196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.

Keys:

  • 快乐模拟

Attention:

  • under algorithm, reverse(s.begin(),s.end());

Code:

 /*
Data: 2019-08-07 19:32:34
Problem: PAT_A1136#A Delayed Palindrome
AC: 17:12 题目大意:
非回文数转化为回文数;
while(! palindrome){
1.Reverse
2.add
输入:
给一个不超过1000位的正整数
输出:
给出每次循环的加法操作,最多10次循环
*/
#include<cstdio>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std; bool IsPali(string s)
{
int len=s.size();
for(int i=; i<len/; i++)
if(s[i] != s[len--i])
return false;
return true;
} string Func(string s1)
{
string s,s2=s1;
reverse(s2.begin(),s2.end());
int carry=;
for(int i=; i<s1.size(); i++)
{
carry += (s1[i]-''+s2[i]-'');
s.insert(s.end(),''+carry%);
carry /= ;
}
while(carry!=)
{
s.insert(s.end(),''+carry%);
carry /= ;
}
reverse(s.begin(),s.end());
printf("%s + %s = %s\n", s1.c_str(),s2.c_str(),s.c_str());
return s;
} int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("Test.txt", "r", stdin);
#endif // ONLINE_JUDGE string s;
cin >> s;
for(int i=; i<; i++)
{
if(IsPali(s))
{
printf("%s is a palindromic number.\n", s.c_str());
s.clear();break;
}
s = Func(s);
}
if(s.size())
printf("Not found in 10 iterations."); return ;
}

PAT_A1136#A Delayed Palindrome的更多相关文章

  1. PAT1136:A Delayed Palindrome

    1136. A Delayed Palindrome (20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...

  2. PAT 1136 A Delayed Palindrome

    1136 A Delayed Palindrome (20 分)   Consider a positive integer N written in standard notation with k ...

  3. A1136. Delayed Palindrome

    Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ ...

  4. PAT A1136 A Delayed Palindrome (20 分)——回文,大整数

    Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ ...

  5. 1136 A Delayed Palindrome (20 分)

    Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ ...

  6. PAT 1136 A Delayed Palindrome[简单]

    1136 A Delayed Palindrome (20 分) Consider a positive integer N written in standard notation with k+1 ...

  7. 1136 A Delayed Palindrome (20 分)

    Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ ...

  8. pat 1136 A Delayed Palindrome(20 分)

    1136 A Delayed Palindrome(20 分) Consider a positive integer N written in standard notation with k+1 ...

  9. PAT-1136(A Delayed Palindrome)字符串处理+字符串和数字间的转换

    A Delayed Palindrome PAT-1136 我这里将数字转换为字符串使用的是stringstream字符串流 扩充:将字符串转换为数字可以使用stoi函数,函数头为cstdlib #i ...

随机推荐

  1. [bzoj2743][HEOI2012]采花_树状数组

    采花 bzoj-2743 HEOI-2012 题目大意:给定n朵花,每朵花有一个种类,m次询问:一段区间中至少出现两朵花的种类的个数. 注释:$1\le n,m\le10^6$. 想法:这个题超级像H ...

  2. GDB 调试 PHP文件

    http://www.bo56.com/%E5%9C%A82016%E7%9A%84phpcon%E5%A4%A7%E4%BC%9A%E4%B8%8A%E7%9A%84%E5%88%86%E4%BA% ...

  3. jquery 的ajax无刷新上传文件之后,页面还是会莫名的刷新-----解决办法

    文件上传用到全局数组: $_FILES 只需要把下面的 <button onclick="post()">提交</button> 改为 <input ...

  4. 阻尼滑动--能够滑动过度的ScrollView(OverScrollView)

    贴上一个我自己用过的阻尼滑动的ScrollView,像QQ里面那种滑动效果,尽管不是我写的,可是我认为还能够,贴出来做个记录,实用到的时候免得到处去找. 代码例如以下: /* * Copyright ...

  5. ORA-24247: 网络訪问被訪问控制列表 (ACL) 拒绝

     ORA-24247: 网络訪问被訪问控制列表 (ACL) 拒绝 注意:须要在system用户下使用命令 须要先使用 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL 创建訪问控 ...

  6. C# winform KeyPress 事件中对应的数字

    C#  winform KeyPress 事件中对应的数字所有e.KeyChar值的意思 常用ASCII码表 你自己看看应该就明白了 键盘 ASCII码 键盘 ASCII码 ESC 27 7 55 S ...

  7. [SDOI 2013] 直径

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3124 [算法] 树的直径 [代码] #include<bits/stdc++. ...

  8. 莫队&&分块

    今天兔哥讲了一波莫队,比较有趣,先加一个链接,这是她的教程 rabbithu.cnblogs.com 这里就不详细说了,其实就是两个指针来优化的暴力.一开始排序函数有问题,没用上莫队的核心思想:把查询 ...

  9. C语言相关

    标准输入输出 格式化输入输出 int a,b; int arr[10]={1},*p=&b; double d; char ch,str[30]; scanf("%d%d" ...

  10. 一、SQL系列之~使用SQL语言导出数据及实现定时导出数据任务

    一般情况下,SQL数据库中带有导入与导出数据的直接按键操作,点击数据表所在的数据库--任务--导出/导入数据,根据导入/导出向导直接将数据导出即可. 但导出的数据格式多为Excel格式,如果需要导出的 ...