ACM:动态规划,01背包问题
题目:
有n件物品和一个容量为C的背包。(每种物品均仅仅有一件)第i件物品的体积是v[i],重量是w[i]。选一些物品装到这个背包中,使得背包内物品在整体积不超过C的前提下重量尽量大。
解法:两种思路:
第一种:d(i, j)表示“把第i,i+1,i+2,...n个物品装到容量为j的背包中的接下来的最大总重量”。
d(i, j) = max{d(i+1, j), d(i+1, j-v[i])+w[i]} 前面一项表示不放第i个物品,后面一项表示放第i个物品。
然后取两者之中最大的那个。
#include <iostream>
#include <string>
using namespace std; const int MAXN = 10000;
int n, C, v[MAXN], w[MAXN];
int d[MAXN][MAXN]; //d(i, j)表示“把第i,i+1,i+2,...n个物品装到容量为j的背包中的接下来的最大总重量” int main() {
cin >> n >> C;
for(int i = 0; i < n; ++i) {
cin >> v[i] >> w[i];
}
memset(d, 0, sizeof(d));
for(int i = n; i >= 1; --i) {
for(int j = 0; j <= C; ++j) {
d[i][j] = (i == n ? 0 : d[i+1][j]); //不放第i个物品
if(j >= v[i]) d[i][j] = max(d[i][j], d[i+1][j-v[i]]+w[i]); //不放第i个物品跟放第i个物品之间的最大值
}
}
cout << d[1][C] << endl;
return 0;
}
另外一种:d(i, j)表示“把前 i 个物品装到容量为 j 的背包中的最大总重量”。
d(i, j) = max{d(i-1, j), d(i-1, j-v[i])+w[i]} 前面一项表示不放第i个物品。后面一项表示放第i个物品。
然后取两者之中最大的那个。
#include <iostream>
#include <string>
using namespace std; const int MAXN = 10000;
int n, C;
int d[MAXN][MAXN]; //d(i, j)表示“把前 i 个物品装到容量为 j 的背包中的最大总重量”。 int main() {
cin >> n >> C;
memset(d, 0, sizeof(d));
int v, w;
for(int i = 1; i <= n; ++i) {
cin >> v >> w;
for(int j = 0; j <= C; ++j) {
d[i][j] = (i == 1 ? 0 : d[i-1][j]); //第i个没放进去
if(j >= v) d[i][j] = max(d[i][j], d[i-1][j-v]+w); //不放第i个物品跟放第i个物品之间的最大值
}
}
cout << d[n][C] << endl;
return 0;
}
ACM:动态规划,01背包问题的更多相关文章
- 动态规划入门-01背包问题 - poj3624
2017-08-12 18:50:13 writer:pprp 对于最基础的动态规划01背包问题,都花了我好长时间去理解: poj3624是一个最基本的01背包问题: 题意:给你N个物品,给你一个容量 ...
- c语言数据结构:01背包问题-------动态规划
两天的时间都在学习动态规划:小作业(01背包问题:) 数据结构老师布置的这个小作业还真是让人伤头脑,自己实在想不出来了便去网上寻找讲解,看到一篇不错的文章: http://www.cnblogs.co ...
- PAT1048. Find Coins(01背包问题动态规划解法)
问题描述: Eva loves to collect coins from all over the universe, including some other planets like Mars. ...
- 01背包问题(动态规划)python实现
01背包问题(动态规划)python实现 在01背包问题中,在选择是否要把一个物品加到背包中.必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比較,这样的方式形成的问题导致了很多重叠子问题, ...
- 动态规划专题 01背包问题详解 HDU 2546 饭卡
我以此题为例,详细分析01背包问题,希望该题能够为大家对01背包问题的理解有所帮助,对这篇博文有什么问题可以向我提问,一同进步^_^ 饭卡 Time Limit: 5000/1000 MS (Java ...
- C++动态规划求解0-1背包问题
问题描述: 给定n种物品和一背包.物品i的重量是wi,其价值为vi,背包的容量为C.问:应该如何选择装入背包的物品,是的装入背包中物品的总价值最大? 细节须知: 暂无. 算法原理: a.最优子结构性质 ...
- 0-1背包问题——动态规划求解【Python】
动态规划求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 动态规划核心:计算并存储小问题的最优解,并将这些最 ...
- Codeforces 2016 ACM Amman Collegiate Programming Contest A. Coins(动态规划/01背包变形)
传送门 Description Hasan and Bahosain want to buy a new video game, they want to share the expenses. Ha ...
- 动态规划(DP),0-1背包问题
题目链接:http://poj.org/problem?id=3624 1.p[i][j]表示,背包容量为j,从i,i+1,i+2,...,n的最优解. 2.递推公式 p[i][j]=max(p[i+ ...
- 【ACM】Knapsack without repetition - 01背包问题
无界背包中的状态及状态方程已经不适用于01背包问题,那么我们来比较这两个问题的不同之处,无界背包问题中同一物品可以使用多次,而01背包问题中一个背包仅可使用一次,区别就在这里.我们将 K(ω)改为 K ...
随机推荐
- WampServer更改或重置数据库密码
WampServer安装后密码是空的, 修改一般有两种方式: 一是通过phpMyAdmin直接修改: 二是使用WAMP的MySql控制台修改. 第一种: ①在phpMyAdmin界面中点击[用户],将 ...
- 【Codeforces Round #476 (Div. 2) [Thanks, Telegram!] D】Single-use Stones
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 设长度为L的所有区间里面,石头的个数的最小值为k 设取到k的区间为l,r 那么k就为最多能通过的青蛙个数. 假设k再大一点.比如为k ...
- MySQL主从复制与读写分离(非原创,谢绝膜拜)
MySQL主从复制(Master-Slave)与读写分离(MySQL-Proxy)实践 Mysql作为目前世界上使用最广泛的免费数据库,相信所有从事系统运维的工程师都一定接触过.但在实际的生产环境中, ...
- Opencv 使用Rect选取与设置窗口ROI
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50593825 首先看一下Rect对象的 ...
- 20个C#热点问题
- angular-Scope
Scope(作用域) 是应用在 HTML (视图) 和 JavaScript (控制器)之间的纽带. Scope 是一个对象,有可用的方法和属性. Scope 可应用在视图和控制器上. 当你在 Ang ...
- POJ——T 3159 Candies
http://poj.org/problem?id=3159 Time Limit: 1500MS Memory Limit: 131072K Total Submissions: 33328 ...
- cogs 2170. 大整数取模
2170. 大整数取模 ★ 输入文件:bigint.in 输出文件:bigint.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 输入正整数n和m,输出n mo ...
- Linux进程的内存布局
这张图很好,注意其中最上面是高位地址,虽然很多个0,但是c开头的,不要看反了: 更具体的可以看这里: A.正文段.这是由cpu执行的机器指令部分.通常,正文段是可共享的,所以即使是经常执行的程序(如文 ...
- 怎么用命令行运行jar文件
假设你配置好了jre环境,你如今有一个打包好的jar文件,你能够这样子開始运行 java -classpath example.jar mainClass -classpath告诉虚拟机在哪里找类的字 ...