http://www.aboutyun.com/thread-8927-1-1.html





Mapreduce在hadoop中是一个比較难以的概念。以下须要用心看,然后自己就能总结出来了。

概括:

combine和partition都是函数。中间的步骤应该仅仅有shuffle!



1.combine

combine分为map端和reduce端,作用是把同一个key的键值对合并在一起,能够自己定义的。

combine函数把一个map函数产生的<key,value>对(多个key,value)合并成一个新的<key2,value2>.将新的<key2,value2>作为输入到reduce函数中

这个value2亦可称之为values,由于有多个。这个合并的目的是为了降低网络传输。



详细实现是由Combine类。

实现combine函数,该类的主要功能是合并同样的key键。通过job.setCombinerClass()方法设置。默觉得null,不合并中间结果。实现map函数

详细调用:(下图是调用reduce,合并map的个数)



难点:不知道这个reduce和mapreduce中的reduce差别是什么?

以下简单说一下:后面慢慢琢磨:

在mapreduce中。map多,reduce少。

在reduce中因为数据量比較多。所以干脆。我们先把自己map里面的数据归类,这样到了reduce的时候就减轻了压力。



这里举个样例:

map与reduce的样例

map理解为销售人员,reduce理解为销售经理。

每一个人(map)仅仅管销售,赚了多少钱销售人员不统计。也就是说这个销售人员没有Combine,那么这个销售经理就累垮了。由于每一个人都没有统计,它须要统计全部人员卖了多少件。赚钱了多少钱。

这样是不行的。所以销售经理(reduce)为了减轻压力,每一个人(map)都必须统计自己卖了多少钱,赚了多少钱(Combine),然后经理所做的事情就是统计每一个人统计之后的结果。这样经理就轻松多了。所以Combine在map所做的事情。减轻了reduce的事情。

(这就是为什么说map的Combine干reduce的事情。相信你应该明确了)

public  static void main(String[] args)throws IOException {

        Configuration conf = new Configuration();

        Job job = new Job(conf);

        job.setInputFormatClass(TextInputFormat.class);

        job.setMapperClass(Mapper.class);

        job.setCombinerClass(reduce.class);

        job.setPartitionerClass(HashPartitioner.class);

        job.setReducerClass(Reducer.class);

        job.setOutputFormatClass(TextOutFormat.class);

    }

}

2.partition

partition是切割map每一个节点的结果,依照key分别映射给不同的reduce。也是能够自己定义的。这里事实上能够理解归类。

我们对于错综复杂的数据归类。比方在动物园里有牛羊鸡鸭鹅。他们都是混在一起的。可是到了晚上他们就各自牛回牛棚。羊回羊圈,鸡回鸡窝。partition的作用就是把这些数据归类。仅仅只是在敲代码的时候,mapreduce使用哈希HashPartitioner帮我们归类了。这个我们也能够自己定义。

HashPartitioner是mapreduce的默认partitioner。

计算方法是



which reducer=(key.hashCode() & Integer.MAX_VALUE) % numReduceTasks。得到当前的目的reducer。

以下在看该怎样自己定义,该怎样调用:(以下便是自己定义了一个Partition函数。红字部分是算法的核心,也就是分区的核心)

public static class Partition extends Partitioner<IntWritable, IntWritable> {

                @Override

                public int getPartition(IntWritable key, IntWritable value,

                                int numPartitions) {

                        int Maxnumber = 65223;

                        int bound = Maxnumber / numPartitions + 1;

                        int keynumber = key.get();

                        for (int i = 0; i < numPartitions; i++) {

                                if (keynumber < bound * i && keynumber >= bound * (i - 1)) {

                                        return i - 1;

                                }

                        }

                        return 0;

                }



        }

那么我们该怎样调用:(以下调用之后,你的分区函数就生效了)

public static void main(String[] args) throws IOException,

InterruptedException, ClassNotFoundException {

Configuration conf = new Configuration();

Job job = new Job(conf, "sort");

job.setJarByClass(Sort.class);

job.setMapperClass(Map.class);

job.setReducerClass(Reduce.class);

job.setPartitionerClass(Partition.class);

job.setOutputKeyClass(IntWritable.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.setInputPaths(job, "/home/asheng/hadoop/in");

FileOutputFormat

.setOutputPath(job, new Path("/home/asheng/hadoop/out"));

job.waitForCompletion(true);

}

}

3.shuffle



shuffle就是map和reduce之间的过程。包括了两端的combine和partition。

它比較难以理解,由于我们摸不着。看不到它。它仅仅是理论存在的。并且确实存在,它属于mapreduce的框架。编程的时候。我们用不到它,它属于mapreduce框架。具体能够看通过实例让你真正明确mapreduce---填空式、分布(切割)编程

3.1shuffle的作用是

Map的结果,会通过partition分发到Reducer上,Reducer做完Reduce操作后。通过OutputFormat,进行输出

shuffle阶段的主要函数是fetchOutputs(),这个函数的功能就是将map阶段的输出,copy到reduce 节点本地。

MapReduce中combine、partition、shuffle的作用是什么的更多相关文章

  1. MapReduce中的Shuffle和Sort分析

    MapReduce 是现今一个非常流行的分布式计算框架,它被设计用于并行计算海量数据.第一个提出该技术框架的是Google 公司,而Google 的灵感则来自于函数式编程语言,如LISP,Scheme ...

  2. Hadoop : MapReduce中的Shuffle和Sort分析

    地址 MapReduce 是现今一个非常流行的分布式计算框架,它被设计用于并行计算海量数据.第一个提出该技术框架的是Google 公司,而Google 的灵感则来自于函数式编程语言,如LISP,Sch ...

  3. 关于MapReduce中自定义Combine类(一)

    MRJobConfig      public static fina COMBINE_CLASS_ATTR      属性COMBINE_CLASS_ATTR = "mapreduce.j ...

  4. Hadoop学习之路(二十三)MapReduce中的shuffle详解

    概述 1.MapReduce 中,mapper 阶段处理的数据如何传递给 reducer 阶段,是 MapReduce 框架中 最关键的一个流程,这个流程就叫 Shuffle 2.Shuffle: 数 ...

  5. MapReduce详解及shuffle阶段

    hadoop1.x和hadoop2.x的区别: Hadoop1.x版本: 内核主要由Hdfs和Mapreduce两个系统组成,其中Mapreduce是一个离线分布式计算框架,由一个JobTracker ...

  6. 在mapreduce中做分布式缓存的问题

    一.问题描述: 主要解决一个问题,就是两个表做join,两个表都够大,单个表都无法装入内存. 怎么做呢?思路就是对做join的字段做排序两个表都排序,然后针对一个表a逐行读取,希望能够在内存中加载到另 ...

  7. Mapreduce中的字符串编码

    Mapreduce中的字符串编码 $$$ Shuffle的执行过程,需要经过多次比较排序.如果对每一个数据的比较都需要先反序列化,对性能影响极大. RawComparator的作用就不言而喻,能够直接 ...

  8. Spark中的Spark Shuffle详解

    Shuffle简介 Shuffle描述着数据从map task输出到reduce task输入的这段过程.shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过s ...

  9. hadoop的mapReduce和Spark的shuffle过程的详解与对比及优化

    https://blog.csdn.net/u010697988/article/details/70173104 大数据的分布式计算框架目前使用的最多的就是hadoop的mapReduce和Spar ...

随机推荐

  1. python 多列表对应的位置的值形成一个新的列表

    list1 = [1, 2, 3, 4, 5] list2 = ['a','b', 'c', 'd', 'e'] list3 = [1, 2, 3, 4, 5] multi_list = map(li ...

  2. Unity 摄像头竖屏预览显示的问题

    Unity可以通过WebCamTexture打开摄像头,通过 cameraRawImage.texture = camTexture; 将贴图给RawImage,但是WebCamTexture只能设置 ...

  3. NYIST 677 碟战

    碟战时间限制:2000 ms | 内存限制:65535 KB难度:4 描述知己知彼,百战不殆!在战争中如果被敌人掌握了自己的机密,失败是必然的.K国在一场战争中屡屡失败,就想到自己的某些城市可能会有敌 ...

  4. Tarjan强联通分量【模板】

    #include <algorithm> #include <cstdio> using namespace std; ); int n,m,v,u; int edgesum, ...

  5. jdk动态代理(转)

    一旦这样绑定后,那么在进入代理对象方法调用的时候就会到HelloServiceProxy的invoke方法上,invoke方法有三个参数:第一个proxy是代理对象,第二个是当前调用那个方法,第三个是 ...

  6. hdu 2604 Queuing (矩阵高速幂)

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  7. 【App 开发框架 - App Framework】

    http://edm.mcake.com/mark/jqmboi/#plugins 官网:http://app-framework-software.intel.com/index.php 官方API ...

  8. 那些年尝试过的效率工具之Total Commander

    昨天电脑文件很乱,想整理一下发现移动.复制文件要来回目录切换很麻烦,突然就又想起了用Total Commander——简称TC,很久之前尝试过但没坚持使用的工具. 借此机会总结一下自己对TC的认识,后 ...

  9. [JZOJ NOIP2018模拟10.20 B组]

    T1:原根(math) 题目链接: http://172.16.0.132/senior/#contest/show/2532/0 题目: 题解: 一个数m原根的个数是$\phi{(\phi{(m)} ...

  10. POJ 3657 并查集

    题意: 思路: 1.二分+线段树(但是会TLE 本地测没有任何问题,但是POJ上就是会挂--) 2.二分+并查集 我搞了一下午+一晚上才搞出来----..(多半时间是在查错) 首先 如果我们想知道这头 ...