线段树合并。

正解好像不是线段树合并,但是出于练手的目的写了线段树合并。

大概就是对于左右子树,如果有一个为空,返回非空的,如果都不为空,就把这两个整合到一起就行了。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int N=100005;
int tot,ls[N<<5],rs[N<<5],siz[N<<5],n,p[N],head[N],ecnt,lsh[N],LSH,ans[N],rt[N];
struct Edge{int to,nxt;}e[N<<1];
void add(int bg,int ed){e[++ecnt].to=ed;e[ecnt].nxt=head[bg];head[bg]=ecnt;}
void pushup(int x) {siz[x]=siz[ls[x]]+siz[rs[x]];}
void update(int &k,int l,int r,int val) {
if(!k)k=++tot;int mid=l+r>>1;
if(l==r) {siz[k]++;return;}
if(val<=mid) update(ls[k],l,mid,val);
else update(rs[k],mid+1,r,val);
pushup(k);
}
int query(int ql,int qr,int l,int r,int cur) {
int mid=l+r>>1;
if(ql<=l&&r<=qr) return siz[cur];
int sum=0;
if(ql<=mid) sum+=query(ql,qr,l,mid,ls[cur]);
if(qr>mid) sum+=query(ql,qr,mid+1,r,rs[cur]);
return sum;
}
int merge(int u,int v) {
if(u*v==0) return u+v;
ls[u]=merge(ls[u],ls[v]);
rs[u]=merge(rs[u],rs[v]);
pushup(u);
return u;
}
void dfs(int x,int fa) {
for(int i=head[x];i;i=e[i].nxt) {
int v=e[i].to;
if(v==fa) continue;
dfs(v,x);
rt[x]=merge(rt[x],rt[v]);
}
ans[x]=query(p[x]+1,n,1,n,rt[x]);
}
int main() {
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&p[i]),lsh[++LSH]=p[i];
sort(lsh+1,lsh+1+LSH);
int u=unique(lsh+1,lsh+1+LSH)-lsh-1;
for(int i=1;i<=n;i++) p[i]=lower_bound(lsh+1,lsh+1+u,p[i])-lsh;
for(int i=2,fa;i<=n;i++) scanf("%d",&fa),add(i,fa),add(fa,i);
for(int i=1;i<=n;i++) update(rt[i],1,n,p[i]);
dfs(1,0);for(int i=1;i<=n;i++) printf("%d\n",ans[i]);
}

[USACO17JAN]Promotion Counting的更多相关文章

  1. Luogu3605 [USACO17JAN]Promotion Counting晋升者计数

    Luogu3605 [USACO17JAN]Promotion Counting晋升者计数 给一棵 \(n\) 个点的树,点 \(i\) 有一个权值 \(a_i\) .对于每个 \(i\) ,求 \( ...

  2. 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数

    题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...

  3. 树状数组 P3605 [USACO17JAN]Promotion Counting晋升者计数

    P3605 [USACO17JAN]Promotion Counting晋升者计数 题目描述 奶牛们又一次试图创建一家创业公司,还是没有从过去的经验中吸取教训--牛是可怕的管理者! 为了方便,把奶牛从 ...

  4. 洛谷P3605 [USACO17JAN] Promotion Counting 晋升者计数 [线段树合并]

    题目传送门 Promotion Counting 题目描述 The cows have once again tried to form a startup company, failing to r ...

  5. [USACO17JAN]Promotion Counting晋升者计数

    题目描述 奶牛们又一次试图创建一家创业公司,还是没有从过去的经验中吸取教训--牛是可怕的管理者! 为了方便,把奶牛从 1 \cdots N(1 \leq N \leq 100, 000)1⋯N(1≤N ...

  6. luogu P3605 [USACO17JAN]Promotion Counting晋升者计数

    题目链接 luogu 思路 可以说是线段树合并的练手题目吧 也没啥说的,就是dfs,然后合并... 看代码吧 错误 和写主席树错的差不多 都是变量写错.... 代码 #include <bits ...

  7. P3605 [USACO17JAN]Promotion Counting晋升者计数

    思路 线段树合并的板子.. 和子节点合并之后在值域线段树上查询即可 代码 #include <cstdio> #include <algorithm> #include < ...

  8. BZOJ4756 [USACO17JAN]Promotion Counting晋升者计数

    Description The cows have once again tried to form a startup company, failing to remember from past ...

  9. [USACO17JAN] Promotion Counting晋升者计数 (树状数组+dfs)

    题目大意:给你一棵树,求以某节点为根的子树中,权值大于该节点权值的节点数 本题考查dfs的性质 离散+树状数组求逆序对 先离散 我们发现,求逆序对时,某节点的兄弟节点会干扰答案 所以,我们在递推时统计 ...

随机推荐

  1. [bzoj4487][Jsoi2015]染色_容斥原理

    染色 bzoj-4487 Jsoi-2015 题目大意:给你一个n*m的方格图,在格子上染色.有c中颜色可以选择,也可以选择不染.求满足条件的方案数,使得:每一行每一列都至少有一个格子被染色,且所有的 ...

  2. magento 的一些关于addFieldToFilter的查询

    1,匹配country_id的首字母,查询国家,返回数组 //查询国家数据集 $countryCollection=Mage::getResourceModel('directory/country_ ...

  3. POJ 1155

    很久以前做的树形DP题,今天再遇到时,竟然不会了,所以写写.. 设数组: prf[MAX][MAX],cost[MAX],sum[MAX].分别表示,在第i个结点为根的子树内的情况下,若有j个用户申请 ...

  4. Struts2 动态结果集

    1.index.jsp <body> 动态结果 一定不要忘了为动态结果的保存值设置set get方法 <ol> <li><a href="user/ ...

  5. 【c语言】数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字

    题目:数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字. 比如输入一个长度为9的数组{1,2.3.2,2.2.5,4.2}, 因为数组中数字2出现了5次,超过数组的长度的一半,因此输出2 ...

  6. 2016.04.03,英语,《Vocabulary Builder》Unit 09

    her/hes:  from the Latin verb haerere, means 'to stick' or 'to get stuck'. adhesive means 'sticking' ...

  7. HDU3496 Watch the Movie 背包

    题目大意:给你n张电影门票,但一次只可以买m张,并且你最多可以看L分钟,接下来是n场电影,每一场电影a分钟,b价值,要求恰好看m场电影所得到的最大价值,要是看不到m场电影,输出0. 三个限制: 选电影 ...

  8. 手机对支持128G扩展内存的介绍

    具体说明: 1,JB2之前的版本只支持SD2.0 SPEC,SD2.0 SPEC定义了最大支持SD卡容量到32G. 2,JB2及以后的版本支持SD3.0 SPEC,SD3.0的SPEC定义了最大支持S ...

  9. 循环神经网络(RNN, Recurrent Neural Networks)——无非引入了环,解决时间序列问题

    摘自:http://blog.csdn.net/heyongluoyao8/article/details/48636251 不同于传统的FNNs(Feed-forward Neural Networ ...

  10. hdoj--3488--Tour(KM)

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total Submi ...