********************************模板匹配 ********************
create_shape_model
创建模板,这个函数有许多参数,其中金字塔的级数由Numlevels指定,值越大则找到物体的时间越少,AngleStart和AngleExtent决定可能的旋转范围,AngleStep指定角度范围搜索的步长;这里需要提醒的是,在任何情况下,模板应适合主内存,搜索时间会缩短。对特别大的模板,用Optimization来减少模板点的数量是很有用的;MinConstrast将模板从图像的噪声中分离出来,如果灰度值的波动范围是10,则MinConstrast应当设为10;Metric参数决定模板识别的条件,如果设为’use_polarity’,则图像中的物体和模板必须有相同的对比度;创建好模板后,这时还需要监视模板,用inspect_shape_model()来完成,它检查参数的适用性,还能帮助找到合适的参数;另外,还需要获得这个模板的轮廓,用于后面的匹配,get_shape_model_contours()则会很容易的帮我们找到模板的轮廓;

create_shape_model_xld

find_shape_model
它也拥有许多的参数,这些参数都影响着寻找模板的速度和精度。这个的功能就是在一幅图中找出最佳匹配的模板,返回一个模板实例的长、宽和旋转角度。其中参数SubPixel决定是否精确到亚像素级,设为’interpolation’,则会精确到,这个模式不会占用太多时间,若需要更精确,则可设为’least_square’,’lease_square_high’,但这样会增加额外的时间,因此,这需要在时间和精度上作个折中,需要和实际联系起来。比较重要的两个参数是MinSocre和Greediness,前一个用来分析模板的旋转对称和它们之间的相似度,值越大,则越相似,后一个是搜索贪婪度,这个值在很大程度上影响着搜索速度,若为0,则为启发式搜索,很耗时,若为1,则为不安全搜索,但最快。在大多数情况下,在能够匹配的情况下,尽可能的增大其值。

vector_angle_to_rigid
affine_trans_contour_xld
找到之后,还需要对其进行转化,使之能够显示,这两个函数vector_angle_to_rigid()和affine_trans_contour_xld()在这里就起这个作用。前一个是从一个点和角度计算一个刚体仿射变换,这个函数从匹配函数的结果中对构造一个刚体仿射变换很有用,把参考图像变为当前图像

基于形状匹配的参数关系与优化
                       
    在HALCON的说明资料里讲到了这些参数的作用以及关系,在上面提到的文章中也作了介绍,这里主要是重复说明一下这些参数的作用,再强调一下它们影响匹配速度的程度;
    在为了提高速度而设置参数之前,有必要找出那些在所有测试图像中匹配成功的设置,这时需考虑以下情况:
    ① 必须保证物体在图像边缘处截断,也就是保证轮廓的清晰,这些可以通过形态学的一些方法来处理;
    ② 如果Greediness值设的太高,就找不到其中一些可见物体,这时最后将其设为0来执行完全搜索;
    ③ 物体是否有封闭区域,如果要求物体在任何状态下都能被识别,则应减小MinScore值;
    ④ 判断在金字塔最高级上的匹配是否失败,可以通过find_shape_model()减小NumLevels值来测试;
    ⑤ 物体是否具有较低的对比度,如果要求物体在任何状态下都能被识别,则应减小MinContrast值;
    ⑥ 判断是否全局地或者局部地转化对比度极性,如果需要在任何状态下都能被识别,则应给参数Metric设置一个合适的值;
    ⑦ 物体是否与物体的其他实例重叠,如果需要在任何状态下都能识别物体,则应增加MaxOverlap值;
    ⑧ 判断是否在相同物体上找到多个匹配值,如果物体几乎是对称的,则需要控制旋转范围;
如何加快搜索匹配,需要在这些参数中进行合理的搭配,有以下方法可以参考:
    ①  只要匹配成功,则尽可能增加参数MinScore的值;
    ②  增加Greediness值直到匹配失败,同时在需要时减小MinScore值;
    ③  如果有可能,在创建模板时使用一个大的NumLevels,即将图像多分几个金字塔级;
    ④  限定允许的旋转范围和大小范围,在调用find_shape_model()时调整相应的参数;
    ⑤  尽量限定搜索ROI的区域;
     除上面介绍的以外,在保证能够匹配的情况下,尽可能的增大Greediness的值,因为在后面的实验中,用模板匹配进行视频对象跟踪的过程中,这个值在很大程度上影响到匹配的速度。
    当然这些方法都需要跟实际联系起来,不同图像在匹配过程中也会有不同的匹配效果,在具体到某些应用,不同的硬件设施也会对这个匹配算法提出新的要求,所以需要不断地去尝试。
********************************模板匹配 ********************

halcon 模板匹配 -- 转化 vector_angle_to_rigid的更多相关文章

  1. halcon模板匹配

    在机器视觉应用中,经常需要对图像进行仿射变换.1.在基于参考的视觉检测中,由于待检图像与参考图像或多或少都会存在几何变化(平移.旋转.缩放等),所以在做比较之前一般都要对待检图像进行仿射变换以对齐图像 ...

  2. halcon 模板匹配(最简单)

    模板匹配是机器视觉工业现场中较为常用的一种方法,常用于定位,就是通过算法,在新的图像中找到模板图像的位置.例如以下两个图像.   这种模板匹配是最基本的模板匹配.其特点只是存在平移旋转,不存在尺度变化 ...

  3. 重新看halcon模板匹配

    工业中模板匹配有很多需求. 代码如下: read_image (Image, 'J:/测试图片/test1/1.bmp') get_image_size (Image, Width, Height) ...

  4. Halcon 模板匹配实战代码(一)

    模板图片:目标是获取图像左上角位置的数字 直接想法,直接用一个框将数字框出来,然后对图片进行模板匹配(不可行,因为图像中的数字不是固定的) 所以需要选择图像中的固定不变的区域来作为模板,然后根据模板区 ...

  5. halcon 模板匹配 -- find_shape_model

    find_shape_model(Image : :  //搜索图像 ModelID, //模板句柄 AngleStart,  // 搜索时的起始角度 AngleExtent, //搜索时的角度范围, ...

  6. halcon 模板匹配 -- create_shape_model

    create_shape_model(Template : : //reduce_domain后的模板图像 NumLevels,//金字塔的层数,可设为“auto”或0—10的整数 AngleStar ...

  7. 基于HALCON的模板匹配方法总结

    注:很抱歉,忘记从转载链接了,作者莫怪.... 基于HALCON的模板匹配方法总结 很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总是抽不出时间.去年有过一段时间的集中学习,做了许多 ...

  8. 转载:基于HALCON的模板匹配方法总结

    转载链接:     http://blog.csdn.net/b108074013/article/details/37657801 很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总 ...

  9. Halcon编程-基于形状特征的模板匹配

    halcon软件最高效的一个方面在于模板匹配,号称可以快速进行柔性模板匹配,能够非常方便的用于缺陷检测.目标定位.下面以一个简单的例子说明基于形状特征的模板匹配.      为了在右图中,定位图中的三 ...

随机推荐

  1. Spring Boot 内嵌容器 Tomcat / Undertow / Jetty 优雅停机实现

    Spring Boot 内嵌容器 Tomcat / Undertow / Jetty 优雅停机实现 Anoyi 精讲JAVA 精讲JAVA 微信号 toooooooozi 功能介绍 讲解java深层次 ...

  2. js for循环中的var与let

    var a = []; for (var i = 0; i < 10; i++) { a[i] = function () { console.log(i); }; } a[6](); 上面代码 ...

  3. Servlet中使用RequestDispatcher调派请求--forware

    顺便演示了MVC的作法,以后hello.view可以移交到jsp中处理. 而MODEL和CONTROL,VIEW就实现了分享. HelloModel.java: package cc.openhome ...

  4. [bzoj3061][Usaco13Feb]Partitioning the Farm_动态规划_状压dp

    Partitioning the Farm bzoj-3061 Usaco13Feb 题目大意:给定一个n*n的方格图,用k条贯穿方格图的直线将整个方格图分割,使得每一块的权值和的最大值最小. 注释: ...

  5. P1294 高手去散步 洛谷

    https://www.luogu.org/problem/show?pid=1294#sub 题目背景 高手最近谈恋爱了.不过是单相思.“即使是单相思,也是完整的爱情”,高手从未放弃对它的追求.今天 ...

  6. IIS发布后出现“如果在安装 32 位 Oracle 客户端组件的情况下以 64 位模式运行,将出现此问题”错误

    VS2010运行程序没有任何问题,但是发布到IIS以后,连接数据库时报错:“尝试加载 Oracle 客户端库时引发 BadImageFormatException.如果在安装 32 位 Oracle ...

  7. couchbase的备份与恢复命令

    下面技术应用于最优质的水果的鲜果篮 ./cbbackup http://192.168.1.112:8091 /backups/20140505 -u Administrator -p passwor ...

  8. Hypercall

    在Linux中.大家应该对syscall很的了解和熟悉,其是用户态进入内核态的一种途径或者说是一种方式.完毕了两个模式之间的切换:而在虚拟环境中,有没有一种类似于syscall这样的方式.可以从no ...

  9. 一条SQL面试题

    求其中同一个主叫号码的两次通话之间间隔大于10秒的通话记录ID 例如:6,7,8,9,10条记录均符合 ID 主叫号码 被叫号码      通话起始时间            通话结束时间       ...

  10. git出错调试

    https://stackoverflow.com/questions/6178401/how-can-i-debug-git-git-shell-related-problems git_trace ...