题意比较简单,状态转移方程也比较容易得出:

f[i]=max{ f [ j ] }+p[i],(j的结束时间在i开始时间之前)

若i开始之前没有结束的j,则f[i]=p[i];

因数据量太大(n<=10000)因此必须优化,这里使用单调队列降低时间复杂度

首先按开始时间排序,队列里存的是编号,队列要求是开始时间严格递增,f[i]利润值严格递增,每次只需维护单调队列,就能将dp部分降到O(n),因插入队列是用到二分查找,所以总的时间为O(nlogn)

维护单调队列的思路:求f[i]时,从队头开始遍历,找到在i开始时间之前最后结束的j,然后将j之前的全部出队,插入时,首先根据i的结束时间二分查找出i可能插入的位置x,然后看该位置之后的f[x]小于等于f[i]的编号x全部删除,然后若i可以放在此处(两种情况:1.空队时,2.f[i]比f[x]小比f[x-1]大时,刚开始这个地方没处理好,WA了n次!!!),则将i插入单调队列。最后求出最大的f[i]即可。

/*************************************************************************
> File Name: A.cpp
> Author: Chierush
> Mail: qinxiaojie1@gmail.com
> Created Time: 2013年07月26日 星期五 10时52分21秒
************************************************************************/ #include <iostream>
#include <cstring>
#include <cstdlib>
#include <set>
#include <cstdio>
#include <string>
#include <vector>
#include <map>
#include <cmath>
#include <algorithm> #define LL long long
#define LLU unsigned long long using namespace std; struct node
{
int s,t,p;
bool operator<(const node &c) const
{
if (s!=c.s) return s<c.s;
return t<c.t;
}
}; node a[10005];
vector<int>q;
int f[10005]; int find(int x)
{
if (a[q[q.size()-1]].s+a[q[q.size()-1]].t<x) return q.size();
int l=0,r=q.size(),m;
while (l<r)
{
if (l+1==r) return l;
m=(l+r)/2;
if (a[q[m]].s+a[q[m]].t<x) l=m;
else if (a[q[m]].s+a[q[m]].t==x) return m;
else
{
if (m)
{
if (a[q[m-1]].s+a[q[m-1]].t>=x) r=m;
else return m;
}
else return m;
}
}
} int main()
{
int T,n;
scanf("%d",&T);
while (T--)
{
scanf("%d",&n);
for (int i=0;i<n;++i)
scanf("%d%d%d",&a[i].s,&a[i].t,&a[i].p);
sort(a,a+n);
int ans;
f[0]=ans=a[0].p;
q.clear();
q.push_back(0);
for (int i=1;i<n;++i)
{
while (q.size()>1 && a[q[1]].s+a[q[1]].t<=a[i].s) q.erase(q.begin());
if (a[q[0]].s+a[q[0]].t<=a[i].s) f[i]=a[i].p+f[q[0]];
else f[i]=a[i].p;
int x=find(a[i].s+a[i].t);
while (q.size()>x && f[i]>=f[q[x]]) q.erase(q.begin()+x);
if (!q.size() || (q.size()==x && f[i]>f[q[x-1]]) || (q.size()>x && a[q[x]].s+a[q[x]].t>a[i].s+a[i].t && (!x || f[q[x-1]]<f[i]))) q.insert(q.begin()+x,i);
ans=max(ans,f[i]);
}
printf("%d\n",ans);
}
return 0;
}

  

SPOJ130_Rent your airplane and make money_单调队列DP实现的更多相关文章

  1. POJ 3017 单调队列dp

    Cut the Sequence Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8764   Accepted: 2576 ...

  2. [TyvjP1313] [NOIP2010初赛]烽火传递(单调队列 + DP)

    传送门 就是个单调队列+DP嘛. ——代码 #include <cstdio> ; , t = , ans = ~( << ); int q[MAXN], a[MAXN], f ...

  3. zstu 4237 马里奥的求救——(单调队列DP)

    题目链接:http://oj.acm.zstu.edu.cn/JudgeOnline/problem.php?id=4237 这题可以转化为每次可以走g~d+x步,求最大分数,且最大分数的步数最少. ...

  4. 1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP

    1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP 题意 用摄像机观察动物,有两个摄像机,一个可以放在奇数天,一个可以放在偶数天.摄像机在 ...

  5. HDU 5945 维护一个单调队列 dp

    Fxx and game Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Tot ...

  6. vijos P1243 生产产品(单调队列+DP)

      P1243生产产品   描述 在经过一段时间的经营后,dd_engi的OI商店不满足于从别的供货商那里购买产 品放上货架,而要开始自己生产产品了!产品的生产需要M个步骤,每一个步骤都可以在N台机器 ...

  7. bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp

    题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2369  Solved: 1266[Submi ...

  8. POJ 1821 单调队列+dp

    题目大意:有K个工人,有n个墙,现在要给墙涂色.然后每个工人坐在Si上,他能刷的最大范围是Li,且必须是一个连续子区间,而且必须过Si,他刷完后能获得Pi钱 思路:定义dp[i][j]表示前i个人,涂 ...

  9. 【USACO】又买饲料 单调队列dp

    题目描述 约翰开车回家,又准备顺路买点饲料了(咦?为啥要说“又”字?)回家的路程一共有 E 公里, 这一路上会经过 N 家商店,第 i 家店里有 F i 吨饲料,售价为每吨 C i 元.约翰打算买 K ...

随机推荐

  1. Android中间httpclient发送帧get求

    /** * 採用httpclientGet请求的方式 * * @param username * @param password * @return null表示求得的路径有问题,text返回请求得到 ...

  2. java基础篇---文件上传(组件)

    转载自:http://www.cnblogs.com/oumyye/p/4234969.html 文件上传几乎是所有网站都具有的功能,用户可以将文件上传到服务器的指定文件夹中,也可以保存在数据库中,本 ...

  3. ASP.NET Core & Docker & Jenkins 零基础持续集成实战

    原文:ASP.NET Core & Docker & Jenkins 零基础持续集成实战 一.本系列教程说明 源代码管理工具:Gogs 持续集成工具:Jenkins 容器:Docker ...

  4. C#中的interface没那么简单

    最近在园子里闲逛看到一篇文章“(抽象)类和接口细节分析”,尽管作者很细心很细致.可事实上C#里面的interface没那么简单,interface有着大量不为人知的小秘密的说. 1.值类型也能实现接口 ...

  5. android隐藏显示小键盘

    记录一下开发中虚拟键盘的使用,fragment和activity中不同的使用 fragment下点击其它位置隐藏小键盘,复制到initView()方法中 view.setOnTouchListener ...

  6. C# VS 2010创建、安装、调试 windows服务(windows service)

    在一个应用程序中创建多个 windows 服务的方法和 1083 的解决办法 错误解决方案 ------------------------------------------------------ ...

  7. 简明Python3教程 3.介绍

    介绍 Python是少有的几种既强大又简单的编程语言.你将惊喜地发现通过使用Python即可轻松专注于解决问题而非和你所用的语言格式与结构. 下面是Python的官方介绍: Python is an ...

  8. C++安全异常std:auto_ptr

    auto_ptr它是C++标准库(<utility>)为了一个智能指针类模板来解决资源泄漏所提供的问题(注意:这只是一个简单的智能指针) auto_ptr在事实原则的实现RAII,对资源的 ...

  9. bigdata_mac下安装spark_scala

    Java 下载安装Mac对应版本的JDK. Apache-spark $ brew update $ brew info apache-spark $ brew install apache-spar ...

  10. springboot 使用日志

    spring boot 默认使用日志打印到console 添加application.properties文件在src/main/resoures文件夹下 logging.file=my.log 将日 ...