【bzoj4390】[Usaco2015 dec]Max Flow LCA
题目描述
Farmer John has installed a new system of N−1 pipes to transport milk between the N stalls in his barn (2≤N≤50,000), conveniently numbered 1…N. Each pipe connects a pair of stalls, and all stalls are connected to each-other via paths of pipes.
FJ is pumping milk between KK pairs of stalls (1≤K≤100,000). For the iith such pair, you are told two stalls sisi and titi, endpoints of a path along which milk is being pumped at a unit rate. FJ is concerned that some stalls might end up overwhelmed with all the milk being pumped through them, since a stall can serve as a waypoint along many of the KK paths along which milk is being pumped. Please help him determine the maximum amount of milk being pumped through any stall. If milk is being pumped along a path from sisi to titi, then it counts as being pumped through the endpoint stalls sisi and titi, as well as through every stall along the path between them.
给定一棵有N个点的树,所有节点的权值都为0。
有K次操作,每次指定两个点s,t,将s到t路径上所有点的权值都加一。
请输出K次操作完毕后权值最大的那个点的权值。
输入
The first line of the input contains NN and KK.
The next N−1 lines each contain two integers x and y (x≠y,x≠y) describing a pipe between stalls x and y.
The next K lines each contain two integers ss and t describing the endpoint stalls of a path through which milk is being pumped.
输出
An integer specifying the maximum amount of milk pumped through any stall in the barn.
样例输入
5 10
3 4
1 5
4 2
5 4
5 4
5 4
3 5
4 3
4 3
1 3
3 5
5 4
1 5
3 4
样例输出
9
题解
LCA
在x到y的路径上加1,差分一下就是:在x和y上加1,在lca和fa[lca]上减1。
于是使用看得过去一点的求LCA方法求出LCA(代码写了树上倍增),打上差分标记,然后自下而上统计一遍答案即可。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 50010
using namespace std;
int head[N] , to[N << 1] , next[N << 1] , cnt , fa[N][20] , deep[N] , log[N] , sum[N];
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
for(i = 1 ; (1 << i) <= deep[x] ; i ++ ) fa[x][i] = fa[fa[x][i - 1]][i - 1];
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x][0])
fa[to[i]][0] = x , deep[to[i]] = deep[x] + 1 , dfs(to[i]);
}
int lca(int x , int y)
{
int i;
if(deep[x] < deep[y]) swap(x , y);
for(i = log[deep[x] - deep[y]] ; ~i ; i -- )
if((1 << i) <= deep[x] - deep[y])
x = fa[x][i];
if(x == y) return x;
for(i = log[deep[x]] ; ~i ; i -- )
if((1 << i) <= deep[x] && fa[x][i] != fa[y][i])
x = fa[x][i] , y = fa[y][i];
return fa[x][0];
}
int solve(int x)
{
int i , ans = 0;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x][0])
ans = max(ans , solve(to[i])) , sum[x] += sum[to[i]];
return max(ans , sum[x]);
}
int main()
{
int n , m , i , x , y , z;
scanf("%d%d" , &n , &m);
for(i = 2 ; i <= n ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x) , log[i] = log[i >> 1] + 1;
dfs(1);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &x , &y) , z = lca(x , y) , sum[x] ++ , sum[y] ++ , sum[z] -- , sum[fa[z][0]] -- ;
printf("%d\n" , solve(1));
return 0;
}
【bzoj4390】[Usaco2015 dec]Max Flow LCA的更多相关文章
- bzoj4390: [Usaco2015 dec]Max Flow(LCA+树上差分)
题目大意:给出一棵树,n(n<=5w)个节点,k(k<=10w)次修改,每次给定s和t,把s到t的路径上的点权+1,问k次操作后最大点权. 对于每次修改,给s和t的点权+1,给lca(s, ...
- BZOJ4390: [Usaco2015 dec]Max Flow
BZOJ4390: [Usaco2015 dec]Max Flow Description Farmer John has installed a new system of N−1 pipes to ...
- BZOJ 4390: [Usaco2015 dec]Max Flow
4390: [Usaco2015 dec]Max Flow Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 177 Solved: 113[Submi ...
- 【BZOJ4391】[Usaco2015 dec]High Card Low Card(贪心)
[BZOJ4391][Usaco2015 dec]High Card Low Card(贪心) 题面 BZOJ 题解 预处理前缀后缀的结果,中间找个地方合并就好了. #include<iostr ...
- [Usaco2015 dec]Max Flow 树上差分
[Usaco2015 dec]Max Flow Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 353 Solved: 236[Submit][Sta ...
- [Usaco2015 dec]Max Flow
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 204 Solved: 129[Submit][Status][Discuss] Descriptio ...
- 【BZOJ5138】[Usaco2017 Dec]Push a Box(强连通分量)
[BZOJ5138][Usaco2017 Dec]Push a Box(强连通分量) 题面 BZOJ 洛谷 题解 这题是今天看到萝卜在做然后他一眼秒了,我太菜了不会做,所以就来做做. 首先看完题目,是 ...
- 【BZOJ4094】[Usaco2013 Dec]Optimal Milking 线段树
[BZOJ4094][Usaco2013 Dec]Optimal Milking Description Farmer John最近购买了N(1 <= N <= 40000)台挤奶机,编号 ...
- 【BZOJ4101】[Usaco2015 Open]Trapped in the Haybales Silver 二分
[BZOJ4101][Usaco2015 Open]Trapped in the Haybales (Silver) Description Farmer John has received a sh ...
随机推荐
- Aizu 2301 Sleeping Time(概率,剪枝)
根据概率公式dfs即可,判断和区间[T-E,T+E]是否有交,控制层数. #include<bits/stdc++.h> using namespace std; int K,R,L; d ...
- mongodb索引 全文索引使用限制
全文索引非常强大,但是同样存在很多限制,我们来看以下去全文索引的使用限制: 1.每次查询,只能指定一个$text查询 2.$text查询不能出现在$nor查询中 之前没有接触过$nor查询,$nor查 ...
- mysql 获取系统时间的下一天 年-月-日 时:分:秒
DAY) as date
- 基于supersocket、C#对JT808协议进行解析构建gps监控平台服务端
GPS监控平台.车联网.物联网系统中GPRS网络数据的并发通讯和处理解析,主要功能有socket的UDP和TCP链路建立和维持,网络数据协议包接收与解析,分发上传到其他业务规则服务器,在物联网以及位置 ...
- MySQL数据库 crud语句 ifnull() 创建新账户 备份数据库 一对多关系 多对多(中间表) 外键约束 自关联 子查询注意事项 DML DDL DQL mysql面试题 truncate与delete的区别
DML(data manipulation language): 它们是SELECT.UPDATE.INSERT.DELETE,就象它的名字一样,这4条命令是用来对数据库里的数据进行操作的语言 DDL ...
- 在Linux下搜索文件
在Linux下搜索文件============================= 1,which 查找可执行文件的绝对路径 [root@aminglinux ~]# which cat /bin/ca ...
- Shell脚本使用汇总整理——文件夹及子文件备份脚本
Shell脚本使用汇总整理——文件夹及子文件备份脚本 Shell脚本使用的基本知识点汇总详情见连接: https://www.cnblogs.com/lsy-blogs/p/9223477.html ...
- nuxt.js express模板项目IIS部署
继续上一篇的nuxt/express项目部署,还是windows上要把nuxt的服务端渲染项目跑起来,这次的目的是用已经有的域名windows服务器上一个虚拟目录反向代理部署在其他端口nuxt项目. ...
- JZOJ 5812. 【NOIP提高A组模拟2018.8.14】 区间
5812. [NOIP提高A组模拟2018.8.14] 区间 (File IO): input:range.in output:range.out Time Limits: 1000 ms Memo ...
- Python 文件操作Error: binary mode doesn't take an encoding argument
Python 报错:ValueError: binary mode doesn't take an encoding argument 在运行文件操作相关功能时报错:ValueError: binar ...