题目描述

Farmer John has installed a new system of N−1 pipes to transport milk between the N stalls in his barn (2≤N≤50,000), conveniently numbered 1…N. Each pipe connects a pair of stalls, and all stalls are connected to each-other via paths of pipes.
FJ is pumping milk between KK pairs of stalls (1≤K≤100,000). For the iith such pair, you are told two stalls sisi and titi, endpoints of a path along which milk is being pumped at a unit rate. FJ is concerned that some stalls might end up overwhelmed with all the milk being pumped through them, since a stall can serve as a waypoint along many of the KK paths along which milk is being pumped. Please help him determine the maximum amount of milk being pumped through any stall. If milk is being pumped along a path from sisi to titi, then it counts as being pumped through the endpoint stalls sisi and titi, as well as through every stall along the path between them.

给定一棵有N个点的树,所有节点的权值都为0。

有K次操作,每次指定两个点s,t,将s到t路径上所有点的权值都加一。

请输出K次操作完毕后权值最大的那个点的权值。

输入

The first line of the input contains NN and KK.
The next N−1 lines each contain two integers x and y (x≠y,x≠y) describing a pipe between stalls x and y.
The next K lines each contain two integers ss and t describing the endpoint stalls of a path through which milk is being pumped.

输出

An integer specifying the maximum amount of milk pumped through any stall in the barn.

样例输入

5 10
3 4
1 5
4 2
5 4
5 4
5 4
3 5
4 3
4 3
1 3
3 5
5 4
1 5
3 4

样例输出

9


题解

LCA

在x到y的路径上加1,差分一下就是:在x和y上加1,在lca和fa[lca]上减1。

于是使用看得过去一点的求LCA方法求出LCA(代码写了树上倍增),打上差分标记,然后自下而上统计一遍答案即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 50010
using namespace std;
int head[N] , to[N << 1] , next[N << 1] , cnt , fa[N][20] , deep[N] , log[N] , sum[N];
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
for(i = 1 ; (1 << i) <= deep[x] ; i ++ ) fa[x][i] = fa[fa[x][i - 1]][i - 1];
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x][0])
fa[to[i]][0] = x , deep[to[i]] = deep[x] + 1 , dfs(to[i]);
}
int lca(int x , int y)
{
int i;
if(deep[x] < deep[y]) swap(x , y);
for(i = log[deep[x] - deep[y]] ; ~i ; i -- )
if((1 << i) <= deep[x] - deep[y])
x = fa[x][i];
if(x == y) return x;
for(i = log[deep[x]] ; ~i ; i -- )
if((1 << i) <= deep[x] && fa[x][i] != fa[y][i])
x = fa[x][i] , y = fa[y][i];
return fa[x][0];
}
int solve(int x)
{
int i , ans = 0;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x][0])
ans = max(ans , solve(to[i])) , sum[x] += sum[to[i]];
return max(ans , sum[x]);
}
int main()
{
int n , m , i , x , y , z;
scanf("%d%d" , &n , &m);
for(i = 2 ; i <= n ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x) , log[i] = log[i >> 1] + 1;
dfs(1);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &x , &y) , z = lca(x , y) , sum[x] ++ , sum[y] ++ , sum[z] -- , sum[fa[z][0]] -- ;
printf("%d\n" , solve(1));
return 0;
}

【bzoj4390】[Usaco2015 dec]Max Flow LCA的更多相关文章

  1. bzoj4390: [Usaco2015 dec]Max Flow(LCA+树上差分)

    题目大意:给出一棵树,n(n<=5w)个节点,k(k<=10w)次修改,每次给定s和t,把s到t的路径上的点权+1,问k次操作后最大点权. 对于每次修改,给s和t的点权+1,给lca(s, ...

  2. BZOJ4390: [Usaco2015 dec]Max Flow

    BZOJ4390: [Usaco2015 dec]Max Flow Description Farmer John has installed a new system of N−1 pipes to ...

  3. BZOJ 4390: [Usaco2015 dec]Max Flow

    4390: [Usaco2015 dec]Max Flow Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 177  Solved: 113[Submi ...

  4. 【BZOJ4391】[Usaco2015 dec]High Card Low Card(贪心)

    [BZOJ4391][Usaco2015 dec]High Card Low Card(贪心) 题面 BZOJ 题解 预处理前缀后缀的结果,中间找个地方合并就好了. #include<iostr ...

  5. [Usaco2015 dec]Max Flow 树上差分

    [Usaco2015 dec]Max Flow Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 353  Solved: 236[Submit][Sta ...

  6. [Usaco2015 dec]Max Flow

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 204  Solved: 129[Submit][Status][Discuss] Descriptio ...

  7. 【BZOJ5138】[Usaco2017 Dec]Push a Box(强连通分量)

    [BZOJ5138][Usaco2017 Dec]Push a Box(强连通分量) 题面 BZOJ 洛谷 题解 这题是今天看到萝卜在做然后他一眼秒了,我太菜了不会做,所以就来做做. 首先看完题目,是 ...

  8. 【BZOJ4094】[Usaco2013 Dec]Optimal Milking 线段树

    [BZOJ4094][Usaco2013 Dec]Optimal Milking Description Farmer John最近购买了N(1 <= N <= 40000)台挤奶机,编号 ...

  9. 【BZOJ4101】[Usaco2015 Open]Trapped in the Haybales Silver 二分

    [BZOJ4101][Usaco2015 Open]Trapped in the Haybales (Silver) Description Farmer John has received a sh ...

随机推荐

  1. UVA Live Archive 4490 Help Bubu(状压dp)

    难点在于状态设计,从左向右一本书一本书的考虑,每本书的决策有两种拿走或者留下, 对于拿走后的书,之后要放回,但是决策过程中不知道到往哪里放, 虽然前面的书的种类确定,可能是往后面放更优,而后面的书的类 ...

  2. 2017.12.9 Java中的排序---冒泡排序、快速排序、选择排序

    //冒泡排序 public class demo{ public static void main(String[] args) { int[] sum={2,9,10,1,5,88}; System ...

  3. Symfony相关网站参考

    http://www.doctrine-project.org/projects.html 数据库相关知识 http://firehare.blog.51cto.com/809276/703599整合 ...

  4. C#装箱与拆箱的研究

    在对这个问题展开讨论之前,我们不妨先来问这么几个问题,以系统的了解我们今天要探究的主题. 观者也许曾无数次的使用过诸如System.Console类或.NET类库中那些品种繁多的类.那么,我想问的是它 ...

  5. curl_easy_setopt函数介绍

    本节主要介绍curl_easy_setopt中跟http相关的参数.注意本节的阐述都是以libcurl作为主体,其它为客体来阐述的. 1.     CURLOPT_URL 设置访问URL 2.     ...

  6. Java 获取Web项目相对webapp地址

    例如, import java.io.File; import java.io.FileInputStream; import javax.servlet.http.HttpServletReques ...

  7. 如何查看连接到手机热点的ip地址

    因为最近玩树莓派,需要手机做热点,然后用树莓派连接到这个热点上,苦于不知道树莓派被分配了什么样的ip地址,经过一番探索,我发现了两种办法, 安装一个 android terminal( 安卓命令行), ...

  8. 整合mybatis和spring时 Error creating bean with name 'sqlSessionFactory' defined in class path resource

    今天在整合mybatis和spring的时候出的错 报错如下 Exception in thread "main" org.springframework.beans.factor ...

  9. atm-interface-shopping

    from db import db_handlerfrom interface import bank def shopping_interface(name, cost, shoppingcart) ...

  10. 如何修改iframe内的页面的元素的样式。。。。

    方法一: 直接通过设置backgroundColor的颜色即可:<!DOCTYPE html><html><head><script>function ...