CSU-2116 Polyline Simplification
CSU-2116 Polyline Simplification
Description
Mapping applications often represent the boundaries of countries, cities, etc. as polylines, which are connected sequences of line segments. Since fine details have to be shown when the user zooms into the map, these polylines often contain a very large number of segments. When the user zooms out, however, these fine details are not important and it is wasteful to process and draw the polylines with so many segments. In this problem, we consider a particular polyline simplification algorithm designed to approximate the original polyline with a polyline with fewer segments.
A polyline with n segments is described by n + 1 points \(p_0=(x_0,y_0),...,p_n=(x_n,y_n)\), with the ith line segment being pi−1pi. The polyline can be simplified by removing an interior point \(p_i\)(1≤i≤n−1), so that the line segments $p_{i−1} p_i $and \(p_ip_{i+1}\) are replaced by the line segment \(p_{i − 1}p_{i + 1}\). To select the point to be removed, we examine the area of the triangle formed by \(p_{i−1},p_i\),and $ p_{i+1}$(the area is 0 if the three points are colinear), and choose the point pi such that the area of the triangle is smallest. Ties are broken by choosing the point with the lowest index. This can be applied again to the resulting polyline, until the desired number m of line segments is reached.
Consider the example below.

The original polyline is shown at the top. The area of the triangle formed by p2,p3,and p4 is considered (middle), and p3 is removed if the area is the smallest among all such triangles. The resulting polyline after p3 is removed is shown at the bottom.
Input
The first line of input contains two integers n(2≤n≤200000) and m(1≤m<n)m(1≤m<n). The next n + 1 lines specify p0,...,pn. Each point is given by its x and y coordinates which are integers between −5000 and 5000 inclusive. You may assume that the given points are strictly increasing in lexicographical order. That is, \(xi<x_{i+1}\) , or \(xi=x_{i+1}\) and \(yi<y_{i+1}\) for all 0≤i<n .
Output
Print on the kth line the index of the point removed in the kth step of the algorithm described above (use the index in the original polyline).
Sample Input
10 7
0 0
1 10
2 20
25 17
32 19
33 5
40 10
50 13
65 27
75 22
85 17
Sample Output
1
9
6
题解
题意:给定n+1个点,每个点可以与它左右两个点形成一个三角形,每次删去最小的那个三角形的中间那个点,直到剩下m+1个点,求被删除点的编号。
这是一道模拟题,需要用到叉积(向量积)计算三角形面积
\]
带入三点坐标化简一下即可,由于题目中所给坐标均为整数,所以我们可以存不除2的结果,这样都为整数可以用int存。我们用set维护一下最小三角形的面积,该三角形中间点是第几个点。用数组模拟一下双向链表维护一下这个点左右各是哪个点,删除这个点时更新一下就好了,记得如果该三角形不是第一个或者最后一个三角形的话还要分别更新一下新形成的三角形的面积。
#include<bits/stdc++.h>
#define maxn 200050
using namespace std;
struct point {
int x, y;
} a[maxn];
int l[maxn], r[maxn];
int area[maxn];
struct node {
int val, id;
node(int val = 0, int id = 0): val(val), id(id) {}
bool operator < (const node &a) const {
if (val == a.val) return id < a.id;
else return val < a.val;
}
};
int calc1(int x) {
int p1 = l[x], p2 = x, p3 = r[x];
return abs(a[p1].x * a[p2].y + a[p2].x * a[p3].y + a[p3].x * a[p1].y - a[p1].x * a[p3].y - a[p2].x * a[p1].y - a[p3].x * a[p2].y);
}
set<node> s;
int main() {
int n, m;
scanf("%d%d", &n, &m);
int k = n - m;
for (int i = 0; i <= n; i++) {
scanf("%d%d", &a[i].x, &a[i].y);
}
r[0] = 1;
l[n] = n - 1;
for (int i = 1; i < n; i++) {
l[i] = i - 1; r[i] = i + 1;
area[i] = calc1(i);
s.insert(node(area[i], i));
}
for (int i = 1; i <= k; i++) {
set<node>::iterator it = s.begin();
int now = (*it).id;
printf("%d\n", now);
s.erase(it);
l[r[now]] = l[now];
r[l[now]] = r[now];
if (l[now] > 0) {
it = s.find(node(area[l[now]], l[now]));
s.erase(it);
area[l[now]] = calc1(l[now]);
s.insert(node(area[l[now]], l[now]));
}
if (r[now] < n) {
it = s.find(node(area[r[now]], r[now]));
s.erase(it);
area[r[now]] = calc1(r[now]);
s.insert(node(area[r[now]], r[now]));
}
}
return 0;
}
/**********************************************************************
Problem: 2116
User: Artoriax
Language: C++
Result: AC
Time:392 ms
Memory:15308 kb
**********************************************************************/
CSU-2116 Polyline Simplification的更多相关文章
- 中南大学2019年ACM寒假集训前期训练题集(基础题)
先写一部分,持续到更新完. A: 寒衣调 Description 男从戎,女守家.一夜,狼烟四起,男战死沙场.从此一道黄泉,两地离别.最后,女终于在等待中老去逝去.逝去的最后是换尽一生等到的相逢和团圆 ...
- ArcEngine开发各种几何错误代码
E_GEOMETRY_AMBIGUOUSPARTTYPE - Static variable in interface com.esri.arcgis.geometry.esriGeometryErr ...
- psimpl_v7_win32_demo
psimpl - generic n-dimensional polyline simplification 通用N维折线简化程序 Author - Elmar de Koning 作者 - Elma ...
- [svg 翻译教程]Polyline(折线)polygon(多边形)
原文: http://tutorials.jenkov.com/svg/polygon-element.html Polyline 虽然说这个 元素我没用过,但是还是蛮强大的,也翻译下 示例 < ...
- [javascript svg fill stroke stroke-width points polygon属性讲解] svg fill stroke stroke-width points polygon绘制多边形属性并且演示polyline和polygon区别讲解
<!DOCTYPE html> <html lang='zh-cn'> <head> <title>Insert you title</title ...
- [javascript svg fill stroke stroke-width points polyline 属性讲解] svg fill stroke stroke-width points polyline 绘制折线属性讲解
<!DOCTYPE html> <html lang='zh-cn'> <head> <title>Insert you title</title ...
- csu 1812: 三角形和矩形 凸包
传送门:csu 1812: 三角形和矩形 思路:首先,求出三角形的在矩形区域的顶点,矩形在三角形区域的顶点.然后求出所有的交点.这些点构成一个凸包,求凸包面积就OK了. /************** ...
- CSU 1503 点到圆弧的距离(2014湖南省程序设计竞赛A题)
题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1503 解题报告:分两种情况就可以了,第一种是那个点跟圆心的连线在那段扇形的圆弧范围内,这 ...
- CSU 1120 病毒(DP)
题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1120 解题报告:dp,用一个串去更新另一个串,递推方程是: if(b[i] > a ...
随机推荐
- SHOW SLAVE STATUS 详解
MySQL同步功能由3个线程(master上1个,slave上2个)来实现.执行 DE>START SLAVEDE> 语句后,slave就创建一个I/O线程.I/O线程连接到master上 ...
- c++编写递归函数char *itostr (int n,char *string),该函数将整数n转换为十进制表示的字符串。
#include<iostream> #include<stdio.h> using namespace std; ; char *itostr (int n,char *St ...
- ThinkPHP添加扩展配置失败
扩展配置可以支持自动加载额外的自定义配置文件,并且配置格式和项目配置一样.设置扩展配置的方式如下(多个文件用逗号分隔): // 加载扩展配置文件 'LOAD_EXT_CONFIG' => 'us ...
- jquery UI_tabs
1.tab使用 <!doctype html> <html lang="en"> <head> <meta charset="u ...
- 小图示优化 - ASP.NET Sprite and Image Optimization (Web Form)
小图示优化 - ASP.NET Sprite and Image Optimization (Web Form) 透过 NuGet安装下面的套件,可以将您的小图示(icon)合并成一张图 透过 CSS ...
- JavaScript: apply , call 方法
我在一开始看到javascript的函数apply和call时,非常的模糊,看也看不懂,最近在网上看到一些文章对apply方法和call的一些示例,总算是看的有点眉目了,在这里我做如下笔记,希望和大家 ...
- 优化通过redis实现的一个抢红包流程【下】
上一篇文章通过redis实现的抢红包通过测试发现有严重的阻塞的问题,抢到红包的用户很快就能得到反馈,不能抢到红包的用户很久(10秒以上)都无法获得抢红包结果,起主要原因是: 1.用了分布式锁,导致所有 ...
- 列表与特殊字符,div(新手HTMLL基础)
1.无序列表 -项目符号:实心圆(disc).方框(square).空心圆(circle) -列表<ul>---- 列表项<li>--- </li></ul& ...
- 操作系统(1)_操作系统结构_李善平ppt
cpu和内存之间通过地址总线.数据总线.控制总线连接.外部总线连接外部设备.下图有问题,内存和外设没有直接连接.同一组总线,CPU和内存连接的时候硬盘就不能和内存连接,否则有冲突,core和core之 ...
- C++ 容器与继承
如果容器类型定义为基类类型,那么虽然可以把派生类装进容器中,但是不能通过容器访问派生类自己的public成员,派生类将会倍切掉,只保留派生类的基类部分: 如果把容器定义为派生类类型,那么不能把基类类型 ...