题目

给n个人安排座位,先给每个人一个1~n的编号,设第i个人的编号为ai(不同人的编号可以相同),接着从第一个人开始,大家依次入座,第i个人来了以后尝试坐到ai,如果ai被占据了,就尝试ai+1,ai+1也被占据了的话就尝试ai+2,……,如果一直尝试到第n个都不行,该安排方案就不合法。然而有m个人的编号已经确定(他们或许贿赂了你的上司...),你只能安排剩下的人的编号,求有多少种合法的安排方案。由于答案可能很大,只需输出其除以M后的余数即可。

输入格式

第一行一个整数T,表示数据组数

对于每组数据,第一行有三个整数,分别表示n、m、M

若m不为0,则接下来一行有m对整数,p1、q1,p2、q2 ,…, pm、qm,其中第i对整数pi、qi表示第pi个人的编号必须为qi

输出格式

对于每组数据输出一行,若是有解则输出YES,后跟一个整数表示方案数mod M,注意,YES和数之间只有一个空格,否则输出NO

输入样例

2

4 3 10

1 2 2 1 3 1

10 3 8882

7 9 2 9 5 10

输出样例

YES 4

NO

提示

100%的数据满足:1≤T≤10,1≤n≤300,0≤m≤n,2≤M≤109,1≤pi、qi≤n 且保证pi互不相同。

题解

容易发现其实这是插入顺序无关的

位置插入是否合法,只要看这个位置及其之后是否坐满

直接难以计算一个位置之后坐了多少

但是坐到一个位置前的人的编号一定比这个位置小

如果编号为一个位置及其之前的位置的人数小于这个位置的编号,说明前面的座位一定坐不满,那么就代表着不合法

所以我们设\(f[i][j]\)表示编号为第\(i\)个位置及其之前的人数有\(j\)人的方案数

就可以枚举\(i\)号位坐了多少人进行转移了

我们记一个\(sum[i]\)数组表示固定编号\(<=i\)的人数

并且将没有固定编号的人数记为编号\(0\)

这样子一个位置可以坐的人数就在范围\([num[i],sum[i]]\)以内了,其中\(num[i]\)指固定编号为\(i\)的人数

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 305,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int P,n,m;
LL C[maxn][maxn],f[maxn][maxn],sum[maxn],num[maxn];
void init(){
memset(f,0,sizeof(f));
memset(sum,0,sizeof(sum));
memset(num,0,sizeof(num));
C[0][0] = 1;
for (int i = 1; i <= n; i++){
C[i][0] = C[i][i] = 1;
for (int j = 1; j <= (i >> 1); j++)
C[i][j] = C[i][i - j] = (C[i - 1][j - 1] + C[i - 1][j]) % P;
}
}
int main(){
int T = read(),flag;
while (T--){
n = read(); m = read(); P = read(); flag = true;
init(); sum[0] = n - m;
for (int i = 1; i <= m; i++) read(),num[read()]++;
for (int i = 1; i <= n; i++){
sum[i] = sum[i - 1] + num[i];
if (sum[i] < i) {flag = false; break;}
}
if (!flag){puts("NO"); continue;}
f[0][0] = 1;
for (int i = 1; i <= n; i++){
for (int j = i; j <= sum[i]; j++){
for (int k = num[i]; k <= j - i + 1; k++)
f[i][j] = (f[i][j] + f[i - 1][j - k] * C[sum[i] - num[i] - (j - k)][k - num[i]] % P) % P;
}
}
printf("YES %lld\n",f[n][n]);
}
return 0;
}

BZOJ2302 [HAOI2011]Problem c 【dp】的更多相关文章

  1. BZOJ2298 [HAOI2011]problem a 【dp】

    题目 一次考试共有n个人参加,第i个人说:"有ai个人分数比我高,bi个人分数比我低."问最少有几个人没有说真话(可能有相同的分数) 输入格式 第一行一个整数n,接下来n行每行两个 ...

  2. BZOJ 2298: [HAOI2011]problem a【动态规划】

    Description 一次考试共有n个人参加,第i个人说:“有ai个人分数比我高,bi个人分数比我低.”问最少有几个人没有说真话(可能有相同的分数) Input 第一行一个整数n,接下来n行每行两个 ...

  3. HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】

    HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...

  4. HDOJ 1501 Zipper 【DP】【DFS+剪枝】

    HDOJ 1501 Zipper [DP][DFS+剪枝] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...

  5. HDOJ 1257 最少拦截系统 【DP】

    HDOJ 1257 最少拦截系统 [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

  6. HDOJ 1159 Common Subsequence【DP】

    HDOJ 1159 Common Subsequence[DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  7. HDOJ_1087_Super Jumping! Jumping! Jumping! 【DP】

    HDOJ_1087_Super Jumping! Jumping! Jumping! [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  8. 【dp】D. Caesar's Legions

    https://www.bnuoj.com/v3/contest_show.php?cid=9146#problem/D [题意]给定n1个A,n2个B,排成一排,要求A最多能连续k1个紧挨着,B最多 ...

  9. 【dp】codeforces C. Vladik and Memorable Trip

    http://codeforces.com/contest/811/problem/C [题意] 给定一个自然数序列,在这个序列中找出几个不相交段,使得每个段的异或值之和相加最大. 段的异或值这样定义 ...

随机推荐

  1. CF Gym 100637J Superfactorial numeral system (构造)

    题意:给一个式子,ak,k>2时,0<=ak<k:ai都是整数,给你p,q让你求一组ak. 题解:构造,每次除掉q取整得到ai,然后减一减 #include<cstdio> ...

  2. Uva 127 poj 1214 `Accordian'' Patience 纸牌游戏 模拟

    Input Input data to the program specifies the order in which cards are dealt from the pack. The inpu ...

  3. python_82_标准库_random模块

    import random print(help(random.random)) #随机整数 print(random.randint(1,7))#生成一个[1, 7]的随机整数 print(rand ...

  4. sql server 定时备份 脚本

    ) DECLARE @date DATETIME SELECT @date = GETDATE() SELECT @filename = 'G:\backup\NewPlulishSQL-' + CA ...

  5. iOS 开发 Xib 的嵌套使用

    最近公司项目需要使用 Xib 中嵌套 Xib来布局界面的, 研究了很久才实现!!! 分享给大家,希望帮助到更多的开发者...... 开发中自定义界面有两种方式 一: 纯代码实现 适合单个极度复杂的界面 ...

  6. java开发微信公众号----开发者基本配置的

    首先附上微信公众平台开发技术文档地址:https://mp.weixin.qq.com/wiki?t=resource/res_main&id=mp1472017492_58YV5 本文主要描 ...

  7. 主题模型LDA及在推荐系统中的应用

    1 关于主题模型 使用LDA做推荐已经有一段时间了,LDA的推导过程反复看过很多遍,今天有点理顺的感觉,就先写一版. 隐含狄利克雷分布简称LDA(latent dirichlet allocation ...

  8. python生成四位随机数

    有些时候需要发送短信给用户生成四位随机数字,这里在python中我们可以根据python自带的标准库random和string来实现. random下有三个可以随机取数的函数,分别是choice,ch ...

  9. 如何用纯 CSS 和 D3 创作一艘遨游太空的宇宙飞船

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/oMqNmv 可交互视频 ...

  10. constraint the design