Deep Residual Learning for Image Recognition

简介

这是何大佬的一篇非常经典的神经网络的论文,也就是大名鼎鼎的ResNet残差网络,论文主要通过构建了一种新的网络结构来解决当网络层数过高之后更深层的网络的效果没有稍浅层网络好的问题,并且做出了适当解释,用ResNet很好的解决了这个问题。

背景

深度卷积神经网络已经在图像分类问题中大放异彩了,近来的研究也表明,网络的深度对精度起着至关重要的作用。但是,随着网络的加深,有一个问题值得注意,随着网络一直堆叠加深,网络的效果一直会越来越好吗?显然会遇到梯度消失或者是梯度爆炸问题,而这个问题,已经可以通过在初始化的时候归一化输入解决,但是当网络最终收敛之后,又会出现“退化”问题,导致准确率降低(不是overfitting),因此尽管可以不断堆叠网络层数,让其可以训练并且收敛,但是遇到退化问题仍然没办法。作者认为现在通过一些训练手段来解决这个问题远远没有通过改变网络结构来解决这个问题来的更加彻底。图为56层的误差高于20层的误差。

Deep Residual Learning

Residual Learning

ResNet是通过将一层的输入和另一层的输出结果一起作为一个块的输出,假设x是一个块的输入,一块由两层组成,那么他先经过一个卷积层并且relu激活得到F(x),然后F(x)再经过卷积层之后的结果加上之前的输入x
得到一个结果,将结果通过relu激活作为该块的输出。对于普通的卷积网络,我们输出的是F(x),但是在ResNet中,我们输出的是H(x) = F(x) + x,但是我们仍然你和F(x) = H(x) - x.这样有什么好处呢?这样做改变了学习的目标,把原来学习让目标函数等于一个已知的恒定值改变为使输出与输入的残差为0,也就是恒等映射,导致的是,引入残差后映射对输出的变化更为敏感。

比如把5映射到5.1,那么引入残差前是F'(5)=5.1,引入残差后是H(5)=5.1, H(5)=F(5)+5, F(5)=0.1。这里的F'和F都表示网络参数映射,引入残差后的映射对输出的变化更敏感。比如s输出从5.1变到5.2,映射F'的输出增加了1/51=2%,而对于残差结构输出从5.1到5.2,映射F是从0.1到0.2,增加了100%。明显后者输出变化对权重的调整作用更大,所以效果更好。残差的思想都是去掉相同的主体部分,从而突出微小的变化。

可以看下面这张图理解:

而实际过程中我们会想到,输入x和经过layer之后的输出结果的维度不一样,那么他们就不能被直接相加,为了解决这个问题,我们将x卷积变换一下,将x变换为和输出结果一样的维度就可以了。

可以多个层作为一个块,不一定是两层、三层。

H(x)作者称为shortcut connection,意为将x像短路一样加到F(x)后面作为输出

Network Architectures

[论文理解]Deep Residual Learning for Image Recognition的更多相关文章

  1. 论文笔记——Deep Residual Learning for Image Recognition

    论文地址:Deep Residual Learning for Image Recognition ResNet--MSRA何凯明团队的Residual Networks,在2015年ImageNet ...

  2. [论文阅读] Deep Residual Learning for Image Recognition(ResNet)

    ResNet网络,本文获得2016 CVPR best paper,获得了ILSVRC2015的分类任务第一名. 本篇文章解决了深度神经网络中产生的退化问题(degradation problem). ...

  3. Deep Residual Learning for Image Recognition这篇文章

    作者:何凯明等,来自微软亚洲研究院: 这篇文章为CVPR的最佳论文奖:(conference on computer vision and pattern recognition) 在神经网络中,常遇 ...

  4. Deep Residual Learning for Image Recognition (ResNet)

    目录 主要内容 代码 He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]. computer vi ...

  5. Deep Residual Learning for Image Recognition论文笔记

    Abstract We present a residual learning framework to ease the training of networks that are substant ...

  6. Deep Residual Learning for Image Recognition

    Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun           Microsoft Research {kahe, v-xiangz, v-sh ...

  7. Deep Residual Learning for Image Recognition(残差网络)

    深度在神经网络中有及其重要的作用,但越深的网络越难训练. 随着深度的增加,从训练一开始,梯度消失或梯度爆炸就会阻止收敛,normalized initialization和intermediate n ...

  8. 【网络结构】Deep Residual Learning for Image Recognition(ResNet) 论文解析

    目录 0. 论文链接 1. 概述 2. 残差学习 3. Identity Mapping by shortcuts 4. Network Architectures 5. 训练细节 6. 实验 @ 0 ...

  9. Deep Residual Learning for Image Recognition(MSRA-深度残差学习)

    转自:http://blog.csdn.net/solomonlangrui/article/details/52455638   ABSTRACT:           神经网络的训练因其层次加深而 ...

随机推荐

  1. Ajax的调试错误信息的输出

    error: function(xhr, status, error) { console.log(xhr); console.log(status); console.log(error); }

  2. 滴滴Booster移动APP质量优化框架 学习之旅

    推荐阅读: 滴滴Booster移动App质量优化框架-学习之旅 一 Android 模块Api化演练 不一样视角的Glide剖析(一) 一.Booster简介 Booster是滴滴最近开源一个的移动应 ...

  3. 蜂窝网络TDOA定位方法的Fang算法研究及仿真纠错

    科学论文为我们提供科学方法,在解决实际问题中,能极大提高生产效率.但论文中一些失误则可能让使用者浪费大量时间.自己全部再推导那真不容易,怀疑的成本特别高,通常不会选择这条路.而如果真是它的问题,其它所 ...

  4. Photoshop学习:打开PS之前需要...

    颜色:色相(色彩名称):赤橙黄... H 色彩饱和度(纯度):?% S 明度(明暗):B HSB:人眼所看到的 拾色器 色相环 中间亮 边缘饱和度 黑颜色无色相,灰度有 光的三原色:红绿蓝(RGB) ...

  5. c++中调用python脚本提示 error LNK2001: 无法解析的外部符号 __imp_Py_Initialize等错误的解决方法

    最近项目中需要实现一个服务器宕机后短信提醒的功能,个人觉得在使用Python 写http请求这块很方便,发短信这块就使用了python,但是c++程序中调用这个脚本时,编译不通过,提示如下错误: er ...

  6. vue父子组件路由传参的方式

    一.get方式(url传参): 1.动态路由传参: 父组件: selectItem (item) { this.$router.push({ path: `/recommend/${item.id}` ...

  7. 浅淡Java多线程

    工作中一直忙着实现业务逻辑,多线程接触得不多.对多线程的认知,一直停留在Thread和Runnable上.最近心血来潮,找了几本多线程的书,不看不知道,一看吓一跳.原来我对多线程的理解是多么的肤浅.记 ...

  8. 搭建yum源

    五.保留缓存rpm包, 修改配置文件,将最新的rpm包下载到本地并保存. 3) 使用yum命令安装httpd软件包 六.制作yum仓库 1)         自定义yum仓库:createrepo 安 ...

  9. LeetCode:灯泡开关2

    题目 现有一个房间,墙上挂有 n 只已经打开的灯泡和 4 个按钮.在进行了 m 次未知操作后,你需要返回这 n 只灯泡可能有多少种不同的状态. 假设这 n 只灯泡被编号为 [1, 2, 3 ..., ...

  10. CentOS与Ubuntu修改主机名

    CentOS 1.执行hostname查看主机名 2.hostname + 主机名  使需要修改的主机名立即生效,但是下次重启会失效,故需要执行第三步 3.vim /etc/sysconfig/net ...