原文:http://blog.csdn.net/tanglizhe1105/article/details/51050974

背景

很多使用Spark的朋友很想知道rdd里的元素是怎么存储的,它们占用多少存储空间?本次我们将以实验的方式进行测试,展示rdd存储开销性能。 
关于rdd的元素怎么存储,Spark里面实现了好几种不同类型的rdd,如最常见的MapPartitionsRDD,它处理map,filter,mapPartition等不引起shuffle的算子;再如ShuffledRDD它由shuffle操作生成的;像GraphX里面的VertexRDD、EdgeRDD和TripletRDD,它们是分区内构建了大量索引得rdd。不同的rdd拥有不同的元素存储机制,这些机制由rdd具体的分区对象来实现。关于rdd分区对象的存储方式,由于内容过多,这里不便介绍。

测试方法论

rdd到底占用多少空间,使用spark web ui的Executors查看是不够的,它只能显示executor目前已使用内存空间大小,并不能跟踪每个rdd空间使用情况。好在spark提供了cache功能,它能使我们手动控制rdd在内存中贮存。若另外一个rdd使用已cache的rdd,那么它的输入便是cached rdd,rdd的输入在web ui的job信息里是可以查看的。本实验的主要方法便是如此

val a = sc.parallelize( 1 to 1024*1024, 1).cache()
a.count()
val b = a.map( x=> (x, x)).cache()
b.count()
val c = b.map(x => x)
c.count()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

那么b.count()提交的job的输入能查看rdd a占用的内存空间大小,c.count()使得我们能查看rdd b占用的内存空间大小。

结果

元素数目 元素类型 rdd占用空间大小
1M Int 32MB
1M (Int, Int) 48MB
1M (Int, Int, Int) 120MB
1M Long 32MB
1M (Long, Long) 56MB
1M (Long, Long, Long) 120MB
1G Int 32GB
1G (Int, Int) 48GB
1G (Int, Int, Int) 120GB
1G Long 32GB
1G (Long, Long) 56GB
1G (Long, Long, Long) 120GB
10G Int 240GB
10G Long 246.7GB

本实验1M使用单个分区,1G使用80个分区(10个节点),10G使用144个分区(18个节点)

1M与1G元素规模的结果吻合的太好了,以至于我都有不敢相信,可是测试出来的结果就是这样的,这也证明spark在数据规模可扩展性方面真是太完美了。 
关于每条元素的存储开销,若元素是Java对象存储,那么每条元素至少会带入18自己额外开销,若以基本数据类型存储,则不会带入额外开销。 
测试结果有一些诡异的地方: 
相同元素规模情况下,Int与Long占用空间相同,(Int, Int)与(Long, Long)不同,但(Int, Int, Int)与(Long, Long, Long)又相同。 
1M Int净存储空间为4MB,但占用32MB空间,且占用空间一般呈整数样式。

Spark性能调优之道——解决Spark数据倾斜(Data Skew)的N种姿势的更多相关文章

  1. [Spark性能调优] 第三章 : Spark 2.1.0 中 Sort-Based Shuffle 产生的内幕

    本課主題 Sorted-Based Shuffle 的诞生和介绍 Shuffle 中六大令人费解的问题 Sorted-Based Shuffle 的排序和源码鉴赏 Shuffle 在运行时的内存管理 ...

  2. [Spark性能调优] 第四章 : Spark Shuffle 中 JVM 内存使用及配置内幕详情

    本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Mem ...

  3. [Spark性能调优] 源码补充 : Spark 2.1.X 中 Unified 和 Static MemoryManager

    本课主题 Static MemoryManager 的源码鉴赏 Unified MemoryManager 的源码鉴赏 引言 从源码的角度了解 Spark 内存管理是怎么设计的,从而知道应该配置那个参 ...

  4. spark性能调优(四) spark shuffle中JVM内存使用及配置内幕详情

    转载:http://www.cnblogs.com/jcchoiling/p/6494652.html 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1. ...

  5. Spark性能调优篇六之调节数据本地化等待时长

    数据本地化等待时长调节的优化 在项目该如何使用? 通过 spark.locality.wait 参数进行设置,默认为3s,6s,10s. 项目中代码展示: new SparkConf().set(&q ...

  6. [Spark性能调优] 第一章:性能调优的本质、Spark资源使用原理和调优要点分析

    本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质 ...

  7. Spark性能调优

    Spark性能优化指南——基础篇 https://tech.meituan.com/spark-tuning-basic.html Spark性能优化指南——高级篇 https://tech.meit ...

  8. spark 性能调优(一) 性能调优的本质、spark资源使用原理、调优要点分析

    转载:http://www.cnblogs.com/jcchoiling/p/6440709.html 一.大数据性能调优的本质 编程的时候发现一个惊人的规律,软件是不存在的!所有编程高手级别的人无论 ...

  9. 性能调优的本质、Spark资源使用原理和调优要点分析

    本课主题 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质 ...

随机推荐

  1. Debian系统下的ftp服务搭建

    安装vsftpd服务 $ sudo apt install vsftpd 配置参数 命令输入 $ vim /etc/vsftpd.conf 使用如下配置 # Example config file / ...

  2. 死磕 java同步系列之JMM(Java Memory Model)

    简介 Java内存模型是在硬件内存模型上的更高层的抽象,它屏蔽了各种硬件和操作系统访问的差异性,保证了Java程序在各种平台下对内存的访问都能达到一致的效果. 硬件内存模型 在正式讲解Java的内存模 ...

  3. 给出每个员工每年薪水涨幅超过5000的员工编号emp_no、薪水变更开始日期from_date以及薪水涨幅值salary_growth,并按照salary_growth逆序排列。

    题目描述 给出每个员工每年薪水涨幅超过5000的员工编号emp_no.薪水变更开始日期from_date以及薪水涨幅值salary_growth,并按照salary_growth逆序排列. 提示:在s ...

  4. 洛谷 P2216 [HAOI2007]理想的正方形

    P2216 [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一 ...

  5. [Xcode 实际操作]七、文件与数据-(1)获取程序沙箱结构中常用的几个目录

    目录:[Swift]Xcode实际操作 本文将演示如何获取程序沙箱结构中,常见的几个目录. 在项目导航区,打开视图控制器的代码文件[ViewController.swift] import UIKit ...

  6. 调试接口,返回的json数据,我定义了一个类,用来序列化,其中有一个字段定义为string 然后序列化的时候报错

    调试接口,返回的json数据,我定义了一个类,用来序列化,其中有一个字段定义为string 然后序列化的时候报错 在需要解析的类型类上加上声明 eg:

  7. com.android.builder.testing.api.DeviceException: com.android.ddmlib.InstallException: INSTALL_FAILED_ABORTED: User rejected permissions

    原因是连接了两个设备,所以无法启动,关掉一个即可

  8. tomcat jndi 数据源

    web.xml <!-- ================================================================================ --& ...

  9. 应用的入口——Startup

    应用的入口——Startup 一个ASP.NET Core应用被启动之后就具有了针对请求的处理能力,而这个能力是由管道赋予的,所以应用的启动同时意味着管道的成功构建.由于管道是由注册的服务器和若干中间 ...

  10. java preparement

    1.建立链接 Connection conn = getDataSource().getConnection(); PreparedStatement ps = null; 2不自动 Commit 不 ...