Codeforces 762D Maximum path 动态规划
题目大意:
给定一个\(3*n(n \leq 10^5)\)的矩形,从左上角出发到右下角,规定每个格子只能经过一遍。经过一个格子会获得格子中的权值。每个格子的权值\(a_{ij}\)满足\(-10^9 \leq a_{ij} \leq 10^9\).最大化收益
题解:
乍一看,好麻烦!
最主要的是因为他能够往回走.
但是我们画图可以发现:每次往回走一定不用超过1次.
也就是说,最多只能走成这样

而不会走成这样

因为下图的走法一定可以用上图组合,并且
由于只用3行的特性,每次向回走实际上是取走了所有的数.
所以我们只采用上图方式得出来的答案一定最优
所以我们O(n)线性递推即可
设\(f[i][j]\)为到达第i列第j行的最大收益
方程比较多,就不写了,自己看代码吧。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
template<typename T>inline void read(T &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
template<typename T>inline T cat_max(const T &a,const T &b){return a>b ? a:b;}
template<typename T>inline T cat_min(const T &a,const T &b){return a<b ? a:b;}
const int maxn = 100010;
ll w[maxn][6],f[maxn][6],g[maxn][6];
int main(){
int n;read(n);
for(int i=1;i<=n;++i) read(w[i][1]);
for(int i=1;i<=n;++i) read(w[i][2]);
for(int i=1;i<=n;++i) read(w[i][3]);
f[1][1] = w[1][1];
f[1][2] = w[1][1] + w[1][2];
f[1][3] = w[1][1] + w[1][2] + w[1][3];
g[1][1] = w[1][1];g[1][2] = w[1][2];g[1][3] = w[1][3];
for(int i=2;i<=n;++i){
f[i][1] = g[i][1] = f[i-1][1] + w[i][1];
f[i][2] = g[i][2] = f[i-1][2] + w[i][2];
f[i][3] = g[i][3] = f[i-1][3] + w[i][3];
f[i][1] = cat_max(f[i][1],g[i][2] + w[i][1]);
f[i][1] = cat_max(f[i][1],g[i][3] + w[i][2] + w[i][1]);
f[i][2] = cat_max(f[i][2],g[i][1] + w[i][2]);
f[i][2] = cat_max(f[i][2],g[i][3] + w[i][2]);
f[i][3] = cat_max(f[i][3],g[i][2] + w[i][3]);
f[i][3] = cat_max(f[i][3],g[i][1] + w[i][2] + w[i][3]);
f[i][1] = cat_max(f[i][1],g[i-1][3] + w[i][3] + w[i][2] + w[i-1][2] + w[i-1][1] + w[i][1]);
f[i][3] = cat_max(f[i][3],g[i-1][1] + w[i][1] + w[i][2] + w[i-1][2] + w[i-1][3] + w[i][3]);
}
printf("%I64d",f[n][3]);
getchar();getchar();
return 0;
}
Codeforces 762D Maximum path 动态规划的更多相关文章
- CodeForces 762D Maximum path
http://codeforces.com/problemset/problem/762/D 因为是3*n很巧妙的地方是 往左走两步或更多的走法都可以用往回走以一步 并走完一列来替换 那么走的方法就大 ...
- cf 762D. Maximum path
天呢,好神奇的一个DP23333%%%%% 因为1.向左走1格的话相当于当前列和向左走列全选 2.想做走超过1的话可以有上下走替代.而且只能在相邻行向左. 全选的情况只能从第1行和第3行转移,相反全选 ...
- [leetcode]Binary Tree Maximum Path Sum
Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...
- Binary Tree Maximum Path Sum
Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...
- 二叉树系列 - 二叉树里的最长路径 例 [LeetCode] Binary Tree Maximum Path Sum
题目: Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start ...
- [LeetCode] Binary Tree Maximum Path Sum 求二叉树的最大路径和
Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...
- LeetCode(124) Binary Tree Maximum Path Sum
题目 Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequen ...
- LeetCode124:Binary Tree Maximum Path Sum
题目: Given a binary tree, find the maximum path sum. The path may start and end at any node in the tr ...
- leetcode 124. Binary Tree Maximum Path Sum
Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequence ...
随机推荐
- ros学习网站
ROS机器人操作系统入门-中国大学MOOC https://www.bilibili.com/video/av24585414/?p=39 http://i.youku.com/i/UNDA ...
- PHP session回收机制(转)
由于PHP的工作机制,它并没有一个daemon线程,来定时地扫描session信息并判断其是否失效.当一个有效请求发生时,PHP会根据全局变量 session.gc_probability/sessi ...
- ngui 输入事件处理
NGUI不仅提供了图形接口,还提供了输入事件接口!事件接口是通过UICamera来实现的. Unity3d 为我们提供的原装的input尽管非常方便,但真正跨平台使用时(尤其是跨手机与Pc机时)仍然不 ...
- anaconda3.5 3.6 2.7
https://repo.continuum.io/archive/ Filename Size Last Modified MD5 Anaconda2-5.0.1-Linux-x86.sh 413. ...
- ios 推送证书没有密钥 解决方案【转载】
注意事项: 1.keychains选择Login 2.2.在创建完CertificateSigningRequest.certSigningRequest可以看到Keys中该有你的私有秘钥 3.按文档 ...
- eclipse-jee版配置tomcat
Eclipse作为一款优秀的java开发开源IDE,集成了许多优秀的开发控件.下来我就如何安装eclipse及插件进行说明: 一.JDK安装 JDK是作为整个java的核心,包括运行环境,编译工具 ...
- python学习(九)python中的变量、引用和对象的关系
<Think In Java>中说到过"万事万物皆对象",这句话也可以用在Python中. 感觉Python中的变量有点像Javascript中的变量,是弱类型的,但是 ...
- oracle索引INdex
索引是与表相关的一种可选择数据库对象.索引是为提高数据检索的性能而建立,利用它可快速地确定指定的信息. 索引可建立在一表的一列或多列上,一旦建立,由ORACLE自动维护和使用,对用户是完全透明的.然而 ...
- 再看python多线程------threading模块
现在把关于多线程的能想到的需要注意的点记录一下: 关于threading模块: 1.关于 传参问题 如果调用的子线程函数需要传参,要在参数后面加一个“,”否则会抛参数异常的错误. 如下: for i ...
- 九度OJ 1160:放苹果 (DFS)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:998 解决:680 题目描述: 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和 ...