刷题总结——Genghis Khan the Conqueror (hdu4126)
题目:
Our story is about Jebei Noyan(哲别), who was one of the most famous generals in Genghis Khan’s cavalry. Once his led the advance troop to invade a country named Pushtuar. The knights rolled up all the cities in Pushtuar rapidly. As Jebei Noyan’s advance troop did not have enough soldiers, the conquest was temporary and vulnerable and he was waiting for the Genghis Khan’s reinforce. At the meantime, Jebei Noyan needed to set up many guarders on the road of the country in order to guarantee that his troop in each city can send and receive messages safely and promptly through those roads.
There were N cities in Pushtuar and there were bidirectional roads connecting cities. If Jebei set up guarders on a road, it was totally safe to deliver messages between the two cities connected by the road. However setting up guarders on different road took different cost based on the distance, road condition and the residual armed power nearby. Jebei had known the cost of setting up guarders on each road. He wanted to guarantee that each two cities can safely deliver messages either directly or indirectly and the total cost was minimal.
Things will always get a little bit harder. As a sophisticated general, Jebei predicted that there would be one uprising happening in the country sooner or later which might increase the cost (setting up guarders) on exactly ONE road. Nevertheless he did not know which road would be affected, but only got the information of some suspicious road cost changes. We assumed that the probability of each suspicious case was the same. Since that after the uprising happened, the plan of guarder setting should be rearranged to achieve the minimal cost, Jebei Noyan wanted to know the new expected minimal total cost immediately based on current information.
Input
There are no more than 20 test cases in the input.
For each test case, the first line contains two integers N and M (1<=N<=3000, 0<=M<=N×N), demonstrating the number of cities and roads in Pushtuar. Cities are numbered from 0 to N-1. In the each of the following M lines, there are three integers x i, y i and c i(c i<=10 7), showing that there is a bidirectional road between x i and y i, while the cost of setting up guarders on this road is c i. We guarantee that the graph is connected. The total cost of the graph is less or equal to 10 9.
The next line contains an integer Q (1<=Q<=10000) representing the number of suspicious road cost changes. In the following Q lines, each line contains three integers X i, Y i and C i showing that the cost of road (X i, Y i) may change to C i(C i<=10 7). We guarantee that the road always exists and C i is larger than the original cost (we guarantee that there is at most one road connecting two cities directly). Please note that the probability of each suspicious road cost change is the same.
Output
For each test case, output a real number demonstrating the expected minimal total cost. The result should be rounded to 4 digits after decimal point.
Sample Input
3 3
0 1 3
0 2 2
1 2 5
3
0 2 3
1 2 6
0 1 6
0 0
Sample Output
6.0000
Hint
The initial minimal cost is 5 by connecting city 0 to 1 and city 0 to 2. In the first suspicious case, the minimal total cost is increased to 6;
the second case remains 5; the third case is increased to 7. As the result, the expected cost is (5+6+7)/3 = 6.
题解:
很好的一道树形dp题··
每个询问x,y其实求的就是相邻的两个子树x,y的最短距离··我们用best[x][y]表示
由于q很大··上述值肯定是通过预处理求出···首先求出最开始的最小生成树,接着我们要先求得f[i][j],表示以i为根节点,通过非生成树边到达j所在子树的最短距离···对此我们一一枚举0——n-1作为根节点然后树形dp即可求得···
求完f[i][j]的话best[x][y]就很简单了··我们只需枚举y所在子树的所有节点u··求出f[u][x]的最小值即可··最后再与新的增大的边c比较一下取最小值就可以了
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<ctime>
#include<cctype>
#include<algorithm>
using namespace std;
const int N=;
const int M=9e6+;
const int inf=0x3f3f3f3f;
inline int R()
{
char c;int f=;
for(c=getchar();c<''||c>'';c=getchar());
for(;c<=''&&c>='';c=getchar()) f=(f<<)+(f<<)+c-'';
return f;
}
struct node
{
int a,b,val;
}ed[M];
int n,m,q,fst[N],nxt[N*],go[N*],val[N*],tot,father[N],map[N][N],f[N][N],best[N][N];
double sum=,ans=;
bool jud[N][N];
inline int get(int a)
{
if(father[a]==a) return a;
else return father[a]=get(father[a]);
}
inline bool cmp(node a,node b)
{
return a.val<b.val;
}
inline void comb(int a,int b,int c)
{
nxt[++tot]=fst[a],fst[a]=tot,go[tot]=b,val[tot]=c;
nxt[++tot]=fst[b],fst[b]=tot,go[tot]=a,val[tot]=c;
}
inline void pre()
{
tot=;ans=sum=;
for(int i=;i<n;i++) father[i]=i;
memset(fst,,sizeof(fst));memset(map,inf,sizeof(map));
memset(f,inf,sizeof(f));memset(jud,false,sizeof(jud));
memset(best,inf,sizeof(best));
}
inline int dfs1(int u,int fa,int rt)
{
for(int e=fst[u];e;e=nxt[e])
{
int v=go[e];if(v==fa) continue;
f[rt][u]=min(f[rt][u],dfs1(v,u,rt));
}
if(fa!=rt) f[rt][u]=min(f[rt][u],map[rt][u]);
return f[rt][u];
}
inline int dfs2(int u,int fa,int rt)
{
int ans=f[u][rt];
for(int e=fst[u];e;e=nxt[e])
{
int v=go[e];if(v==fa) continue;
ans=min(ans,dfs2(v,u,rt));
}
return ans;
}
inline void dp()
{
for(int i=;i<n;i++)
dfs1(i,-,i);
for(int i=;i<n;i++)
for(int e=fst[i];e;e=nxt[e])
{
int v=go[e];best[i][v]=best[v][i]=dfs2(v,i,i);
}
}
int main()
{
// freopen("a.in","r",stdin);
while(~scanf("%d%d",&n,&m)&&(n+m))
{
int a,b,c;pre();
for(int i=;i<=m;i++)
{
a=R(),b=R(),c=R();map[a][b]=map[b][a]=c;
ed[i].a=a,ed[i].b=b,ed[i].val=c;
}
sort(ed+,ed+m+,cmp);int temp=;
for(int i=;i<=m;i++)
{
int fa=get(ed[i].a),fb=get(ed[i].b);
if(fa!=fb)
{
sum+=ed[i].val;
father[fa]=fb;temp++;
comb(ed[i].a,ed[i].b,ed[i].val);
jud[ed[i].a][ed[i].b]=jud[ed[i].b][ed[i].a]=true;
}
if(temp==n-) break;
}
dp();
q=R();
for(int t=;t<=q;t++)
{
a=R(),b=R(),c=R();
if(!jud[a][b]) ans+=sum;
else
{
int temp=min(c,best[a][b]);
ans+=(sum-map[a][b]+temp);
}
}
ans=(double)ans/q;
printf("%0.4f\n",ans);
}
return ;
}
刷题总结——Genghis Khan the Conqueror (hdu4126)的更多相关文章
- HDU 4126 Genghis Khan the Conqueror 最小生成树+树形dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4126 Genghis Khan the Conqueror Time Limit: 10000/50 ...
- HDU-4126 Genghis Khan the Conqueror 树形DP+MST (好题)
题意:给出一个n个点m条边的无向边,q次询问每次询问把一条边权值增大后问新的MST是多少,输出Sum(MST)/q. 解法:一开始想的是破圈法,后来想了想应该不行,破圈法应该只能用于加边的情况而不是修 ...
- 「日常训练」 Genghis Khan the Conqueror(HDU-4126)
题意 给定\(n\)个点和\(m\)条无向边(\(n\le 3000\)),需要将这\(n\)个点连通.但是有\(Q\)次(\(Q\le 10^4\))等概率的破坏,每次破坏会把\(m\)条边中的某条 ...
- UVA- 1504 - Genghis Khan the Conqueror(最小生成树-好题)
题意: n个点,m个边,然后给出m条边的顶点和权值,其次是q次替换,每次替换一条边,给出每次替换的边的顶点和权值,然后求出这次替换的最小生成树的值; 最后要你输出:q次替换的平均值.其中n<30 ...
- 【Uvalive 5834】 Genghis Khan the Conqueror (生成树,最优替代边)
[题意] 一个N个点的无向图,先生成一棵最小生成树,然后给你Q次询问,每次询问都是x,y,z的形式, 表示的意思是在原图中将x,y之间的边增大(一定是变大的)到z时,此时最小生成数的值是多少.最后求Q ...
- HDU 4126 Genghis Khan the Conqueror MST+树形dp
题意: 给定n个点m条边的无向图. 以下m行给出边和边权 以下Q个询问. Q行每行给出一条边(一定是m条边中的一条) 表示改动边权. (数据保证改动后的边权比原先的边权大) 问:改动后的最小生成树的权 ...
- uvalive 5834 Genghis Khan The Conqueror
题意: 给出一个图,边是有向的,现在给出一些边的变化的信息(权值大于原本的),问经过这些变换后,MST总权值的期望,假设每次变换的概率是相等的. 思路: 每次变换的概率相等,那么就是求算术平均. 首先 ...
- HDU 4126 Genghis Khan the Conqueror (树形DP+MST)
题意:给一图,n个点,m条边,每条边有个花费,给出q条可疑的边,每条边有新的花费,每条可疑的边出现的概率相同,求不能经过原来可疑边 (可以经过可疑边新的花费构建的边),注意每次只出现一条可疑的边,n个 ...
- HDU4126Genghis Khan the Conqueror(最小生成树+并查集)
Genghis Khan the Conqueror Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 327680/327680 K ...
随机推荐
- Nodejs:Node.js模块机制小结
今天读了<深入浅出Nodejs>的第二章:模块机制.现在做一个简单的小结. 序:模块机制大致从这几个部分来讲:JS模块机制的由来.CommonJS AMD CMD.Node模块机制和包和n ...
- Express session的使用
进行session存储时需引用中间件,app.js var express=require('express'); var app=express(); var cookieParser = requ ...
- 1074: [SCOI2007]折纸origami
Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 372 Solved: 229[Submit][Status][Discuss] Descriptio ...
- 成员变量(实例变量)&局部变量&静态变量(类变量)的区别
成员变量(实例变量)&局部变量区别: (1)作用域 成员变量:针对整个类有效. 局部变量:只在某个范围内有效.(一般指的就是方法,语句体内) (2)存储位置 成员变量:随着对象的创建而存在,随 ...
- FreeRTOS的学习路线
背景 由于之前接触过一些嵌入式RTOS,如Keil-RTX,uCOS-II,也曾经关注过FreeRTOS,但一直没有机会采用FreeRTOS开发.目前FreeRTOS做为主流RTOS,风声正盛.作为嵌 ...
- JZOJ 4738. 神在夏至祭降下了神谕 DP + 线段树优化
4738. 神在夏至祭降下了神谕 Time Limits: 1000 ms Memory Limits: 262144 KB Detailed Limits Goto ProblemSet D ...
- JZOJ 5461. 【NOIP2017提高A组冲刺11.8】购物
5461. [NOIP2017提高A组冲刺11.8]购物 (File IO): input:shopping.in output:shopping.out Time Limits: 1000 ms ...
- systick运用
systick的原理前一篇博文有介绍,简而言之就是SysTick定时器是一个24位的倒计数,当倒计数为0时,将从RELOAD寄存器中取值作为定时器的初始值,同时可以选择在这个时候产生中断(异常号:15 ...
- FreeMarker的<#if></#if>标签
<#if target??> xxxx </#if> 上面这段代码判断target??是否为null,如果不为null时才可以执行if里面的内容,为null时则不进到 if里面 ...
- 【Best Time to Buy and Sell Stock III 】cpp
题目: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...