Friendship
Time Limit: 2000MS   Memory Limit: 20000K
Total Submissions: 10744   Accepted: 2984

Description

In modern society, each person has his own friends. Since all the people are very busy, they communicate with each other only by phone. You can assume that people A can keep in touch with people B, only if 
1. A knows B's phone number, or 
2. A knows people C's phone number and C can keep in touch with B. 
It's assured that if people A knows people B's number, B will also know A's number.

Sometimes, someone may meet something bad which makes him lose touch with all the others. For example, he may lose his phone number book and change his phone number at the same time.

In this problem, you will know the relations between every two among N people. To make it easy, we number these N people by 1,2,...,N. Given two special people with the number S and T, when some people meet bad things, S may lose touch with T. Your job is to compute the minimal number of people that can make this situation happen. It is supposed that bad thing will never happen on S or T.

Input

The first line of the input contains three integers N (2<=N<=200), S and T ( 1 <= S, T <= N , and S is not equal to T).Each of the following N lines contains N integers. If i knows j's number, then the j-th number in the (i+1)-th line will be 1, otherwise the number will be 0.

You can assume that the number of 1s will not exceed 5000 in the input.

Output

If there is no way to make A lose touch with B, print "NO ANSWER!" in a single line. Otherwise, the first line contains a single number t, which is the minimal number you have got, and if t is not zero, the second line is needed, which contains t integers in ascending order that indicate the number of people who meet bad things. The integers are separated by a single space.

If there is more than one solution, we give every solution a score, and output the solution with the minimal score. We can compute the score of a solution in the following way: assume a solution is A1, A2, ..., At (1 <= A1 < A2 <...< At <=N ), the score will be (A1-1)*N^t+(A2-1)*N^(t-1)+...+(At-1)*N. The input will assure that there won't be two solutions with the minimal score.

Sample Input

3 1 3
1 1 0
1 1 1
0 1 1

Sample Output

1
2

题目链接:POJ 1815

给了一个用邻接矩阵表示的无向图,断开S与T点的最少点数集且这个集合不能包含S与T,若这个集合不为0,则输出字典序最小的一种方案。

题意显然是求最少割点集,肯定要拆点了, 考虑原图一个人的影响,去掉这个人则与与他直接连接的人均无法连接到他,因此自身拆出来的边流量为1,为了保证S与T不在集合中,这两个点的边流量为INF,然后顺序枚举各个点,若去掉当前点流量变小了当前边权的值,则说明这个点就在割边集中。

代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 210;
struct edge
{
int to, nxt, cap;
edge() {}
edge(int _to, int _nxt, int _cap): to(_to), nxt(_nxt), cap(_cap) {}
} E[(N * (N >> 1) + N) << 2];
int G[N][N];
int head[N << 1], tot;
int d[N << 1];
bool del[N]; void init()
{
CLR(head, -1);
tot = 0;
CLR(del, false);
}
void resetG()
{
CLR(head, -1);
tot = 0;
}
inline void add(int s, int t, int c)
{
E[tot] = edge(t, head[s], c);
head[s] = tot++;
E[tot] = edge(s, head[t], 0);
head[t] = tot++;
}
int bfs(int s, int t)
{
CLR(d, -1);
d[s] = 0;
queue<int>Q;
Q.push(s);
while (!Q.empty())
{
int u = Q.front();
Q.pop();
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == -1 && E[i].cap > 0)
{
d[v] = d[u] + 1;
if (v == t)
return 1;
Q.push(v);
}
}
}
return ~d[t];
}
int dfs(int s, int t, int f)
{
if (s == t || !f)
return f;
int ret = 0;
for (int i = head[s]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == d[s] + 1 && E[i].cap > 0)
{
int df = dfs(v, t, min(f, E[i].cap));
if (df > 0)
{
E[i].cap -= df;
E[i ^ 1].cap += df;
ret += df;
if (!(f -= df))
break;
}
}
}
if (!ret)
d[s] = -2;
return ret;
}
int dinic(int s, int t)
{
int ret = 0;
while (bfs(s, t))
ret += dfs(s, t, INF);
return ret;
}
int main(void)
{
int n, S, T, i, j;
while (~scanf("%d%d%d", &n, &S, &T))
{
init();
for (i = 1; i <= n; ++i)
{
for (j = 1; j <= n; ++j)
scanf("%d", &G[i][j]);
}
if (G[S][T])
puts("NO ANSWER!");
else
{
vector<int>vec;
int mf = 0;
for (int pos = 0; pos <= n; ++pos)
{
if (pos == S || pos == T)
continue;
del[pos] = true;
resetG();
for (j = 1; j <= n; ++j)
{
if (!del[j])
{
if (j == S || j == T)
{
add(j, j + n, INF); //2n
add(j + n, j, INF);
}
else
{
add(j, j + n, 1);
add(j + n, j, 1);
}
}
}
for (i = 1; i <= n; ++i) //无向图只需用到上三角
{
for (j = i + 1; j <= n; ++j)
{
if (G[i][j])
{
add(i + n, j, INF); //2*n*n/2
add(j + n, i, INF);
}
}
}
int tf = dinic(S + n, T);
if (!pos)
mf = tf;
else if (mf - tf == 1)
{
mf = tf;
vec.push_back(pos);
}
else
del[pos] = false;
}
int sz = vec.size();
printf("%d\n", sz);
for (i = 0; i < sz; ++i)
printf("%d%s", vec[i], i == sz - 1 ? "\n" : " ");
}
}
return 0;
}

POJ 1815 Friendship(字典序最小的最小割)的更多相关文章

  1. poj 1815 Friendship 字典序最小+最小割

    题目链接:http://poj.org/problem?id=1815 In modern society, each person has his own friends. Since all th ...

  2. POJ 1815 Friendship ★(字典序最小点割集)

    [题意]给出一个无向图,和图中的两个点s,t.求至少去掉几个点后才能使得s和t不连通,输出这样的点集并使其字典序最大. 不错的题,有助于更好的理解最小割和求解最小割的方法~ [思路] 问题模型很简单, ...

  3. POJ 1815 Friendship(最小割+字典序输出割点)

    http://poj.org/problem?id=1815 题意: 在现代社会,每个人都有自己的朋友.由于每个人都很忙,他们只通过电话联系.你可以假定A可以和B保持联系,当且仅当:①A知道B的电话号 ...

  4. POJ 1815 Friendship(最小割)

    http://poj.org/problem? id=1815 Friendship Time Limit: 2000MS   Memory Limit: 20000K Total Submissio ...

  5. POJ 1815 Friendship (Dinic 最小割)

    Friendship Time Limit: 2000MS   Memory Limit: 20000K Total Submissions: 8025   Accepted: 2224 Descri ...

  6. poj 1815 Friendship (最小割+拆点+枚举)

    题意: 就在一个给定的无向图中至少应该去掉几个顶点才干使得s和t不联通. 算法: 假设s和t直接相连输出no answer. 把每一个点拆成两个点v和v'',这两个点之间连一条权值为1的边(残余容量) ...

  7. poj 1815 Friendship【最小割】

    网络流的题总是出各种奇怪的错啊--没写过邻接表版的dinic,然后bfs扫到t点不直接return 1就会TTTTTLE-- 题目中的操作是"去掉人",很容易想到拆点,套路一般是( ...

  8. POJ 1815 - Friendship - [拆点最大流求最小点割集][暴力枚举求升序割点] - [Dinic算法模板 - 邻接矩阵型]

    妖怪题目,做到现在:2017/8/19 - 1:41…… 不过想想还是值得的,至少邻接矩阵型的Dinic算法模板get√ 题目链接:http://poj.org/problem?id=1815 Tim ...

  9. POJ 1815 Friendship(最大流最小割の字典序割点集)

    Description In modern society, each person has his own friends. Since all the people are very busy, ...

随机推荐

  1. Matlab 中实用数据结构之 containers.Map

    概要   熟悉 Python 的都知道字典 Dict 类型数据结构功能的强大,Matlab 中虽然有表结构,但是其列名必须是亦变量名类型的字符串,如果我想用数字开头的字符串作键值,其表结构就无能为力了 ...

  2. AngularJs学习笔记-服务

    服务 (1)在模块中声明的服务对所有组件可见 (2)在组件中声明的服务对自己本身和其子组件 (3)在组件中声明的服务会覆盖在模块中声明的服务 (4)通过@Injectable()装饰器可以在服务中注入 ...

  3. Nginx学习记录(二)

    1. 什么是反向代理 正向代理 反向代理: 反向代理服务器决定哪台服务器提供服务. 返回代理服务器不提供服务器.也是请求的转发. 反向代理(Reverse Proxy)方式是指以代理服务器来接受Int ...

  4. jsp页面:一个form,不同请求提交form

    需求:一个表单中有一个请求 action="url"发送数据地址: 在表单外有一个请求,请求form表单提交的数据 我们用js来写:通过每次请求传不同的action=url; 例如 ...

  5. Ansible学习 安装

    对于运维人员来说,自动化工具是日常工作中比不可少的.Ansible是一个很好的自动化工具. Ansible默认使用SSH协议管理机器,在管理主机上安装Ansible,管理主机和被管理主机只要安装了py ...

  6. C语言实现判断分数等级

    从屏幕上输入一个学生的成绩(0-100),对学生成绩进行评定: <=60为"E" 60~69为"D" 70~79为"C" 80~89为 ...

  7. Flask初学者:session操作

    cookie:是一种保存数据的格式,也可以看成是保存数据的一个“盒子”,服务器返回cookie给浏览器(由服务器产生),由浏览器保存在本地,下次再访问此服务器时浏览器就会自动将此cookie一起发送给 ...

  8. music21 关联 MuseScore 和 Lilypond

    在python安装 music21后,需要关联 musescore 或 lilypond 才能可以用图形化的形式看到 乐谱. 因此 在安装 music21后,需要配置环境变量,yvivid 在 mus ...

  9. STM32串口——中断方式的一般配置方法

    #include "stm32f10x.h" /************************************************ 该程序讲解串口程序的一般配置方法: ...

  10. 实验一 查看CPU和内存,用机器指令和汇编指令编程

    (1):使用debug,将下面的程序段写入内存,逐条执行,观察每条指令执行后,CPU中相关寄存器中内存的变化. 机器码        汇编指令 b8 20 4e     mov ax,4E20H 05 ...