最优化理论-Simplex线性规划
Sorry,各位,现在这里面啥也没,之所以开这篇文章,是防止以后用得到;现在研究这些,总感觉有些不合适,本人还不到那个层次;如果之后有机会继续研究simplex-线性规划问题,再回来参考下面的链接进行学习,也就相当于做个笔记吧。
各位大佬勿怪。
下面几篇文章,觉得写的不错,从最开始将起;至于本人,肯定是没有学习完的。
Reference
- 线性规划专题——SIMPLEX 单纯形算法(一)
- 线性规划专题——SIMPLEX 单纯形算法(二)
- 线性规划专题——SIMPLEX 单纯形算法(三)图解——示例、注意点
- 线性规划专题——SIMPLEX 单纯形算法(四)——实现
最优化理论-Simplex线性规划的更多相关文章
- 单纯形方法(Simplex Method)
最近在上最优理论这门课,刚开始是线性规划部分,主要的方法就是单纯形方法,学完之后做了一下大M算法和分段法的仿真,拿出来与大家分享一下.单纯形方法是求解线性规划问题的一种基本方法. 线性规划就是在一系列 ...
- 【UOJ 179】 #179. 线性规划 (单纯形法)
http://uoj.ac/problem/179 补充那一列修改方法: 对于第i行: $$xi=bi-\sum Aij*xj$$ $$=bi-\sum_{j!=e} Aij*xj-Aie*xe ...
- Mathematical optimization数学上的最优化
https://en.wikipedia.org/wiki/Mathematical_optimization In mathematics, computer science and operati ...
- Apply Newton Method to Find Extrema in OPEN CASCADE
Apply Newton Method to Find Extrema in OPEN CASCADE eryar@163.com Abstract. In calculus, Newton’s me ...
- 3D打印:三维智能数字化创造(全彩)
3D打印:三维智能数字化创造(全彩)(全球第一本系统阐述3D打印与3D智能数字化的专业著作) 吴怀宇 编 ISBN 978-7-121-22063-0 2014年1月出版 定价:99.00元 42 ...
- 支持向量机通俗导论(理解SVM的三层境界)
原文链接:http://blog.csdn.net/v_july_v/article/details/7624837 作者:July.pluskid :致谢:白石.JerryLead 出处:结构之法算 ...
- 装载:关于拉格朗日乘子法与KKT条件
作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...
- 《3D打印:三维智能数字化创造(全彩)》
<3D打印:三维智能数字化创造(全彩)> 基本信息 作者: 吴怀宇 出版社:电子工业出版社 ISBN:9787121220630 上架时间:2014-1-13 出版日期:2014 年1月 ...
- 关于拉格朗日乘子法与KKT条件
关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件 目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...
随机推荐
- WebsiteCrawler
看到网上不少py的爬虫功能极强大,可惜对py了解的不多,以前尝试过使用c# WebHttpRequert类来读取网站的html页面源码,然后通过正则表达式筛选出想要的结果,但现在的网站中,多数使用js ...
- 20145239杜文超 《Java程序设计》第7周学习总结
20145239 <Java程序设计>第7周学习总结 教材学习内容总结 Lambda 认识Lambda语法 Lambda语法概述: Arrays的sort()方法可以用来排序,在使用sor ...
- 基于android的GPS移植调用关系【转】
本文转载自:http://blog.csdn.net/jshazk1989/article/details/6877823 版权声明:本文为博主原创文章,未经博主允许不得转载. http://down ...
- 创建Django博客的数据库模型
声明:此Django分类下的教程是追梦人物所有,地址http://www.jianshu.com/u/f0c09f959299,本人写在此只是为了巩固复习使用 blog最主要的功能就是展示我们写的文章 ...
- (1)Java多线程编程核心——Java多线程技能
1.为什么要使用多线程?多线程的优点? 提高CPU的利用率 2.什么是多线程? 3.Java实现多线程编程的两种方式? a.继承Thread类 public class MyThread01 exte ...
- c macro pair
成对使用的macro, 不过也有机会用错, 死都不知道怎么死的, 这宏... #define pthread_cleanup_push(func, val) \ { \ struct __darwin ...
- Thread,Service和AsyncTask
Thread,Service和AsyncTask这三种东西,似乎都是用来执行后台耗时操作的: 印象里Service是「超过5s的耗时操作就应该放进去」,但是Service实际上仍然是主线程,所以,在S ...
- AtCoder AGC #3 Virtual Participation
Havana真好听qwq AB题就不写了 SB C.BBuBBBlesort! 有一个长度为$n$的数列 你每次可以用两种操作 1.交换两个相邻元素 2.交换两个隔且仅隔了一个的元素 求把数列排成有序 ...
- 如何理解 Spring 注入
先看一段代码 假设你编写了两个类,一个是人(Person),一个是手机(Mobile). 人有时候需要用手机打电话,需要用到手机的dialUp方法. 传统的写法是这样: Java code publi ...
- Vmware ESXi 6.5 安装手册
1 安装前准备 1.1 硬件环境准备 无 备注: 本指导书以虚拟光驱.虚拟软驱为例,如使用物理光驱.物理软驱安装系统操作则以实际系统光盘.软盘代替. 1.2 ...