K-th Number POJ - 2104

You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment. 
That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?" 
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5. 

Input

The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000). 
The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given. 
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k). 

Output

For each question output the answer to it --- the k-th number in sorted a[i...j] segment. 

Sample Input

7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3

Sample Output

5
6
3

Hint

This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.
 
 
题意:求区间第k大
题解:主席树的板子
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<sstream>
#include<cmath>
#include<stack>
#include<cstdlib>
#include <vector>
#include<queue>
using namespace std; #define ll long long
#define llu unsigned long long
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
const int maxn = 1e5+;
const int mod = 1e9+; int n,q,m,tot;
int a[maxn],t[maxn],T[maxn],lson[maxn*],rson[maxn*],c[maxn*]; void Init_hash()
{
for(int i=;i<=n;i++)
t[i] = a[i];
sort(t+,t++n);
m = unique(t+,t++n)-t-;
} int build(int l,int r)
{
int root = tot++;
c[root] = ;
if (l != r)
{
int mid = (l+r) >> ;
lson[root] = build(l,mid);
rson[root] = build(mid+,r);
}
return root;
}
int Hash(int x)
{
return lower_bound(t+,t++m,x)-t;
}
int update(int root,int pos,int val)
{
int newroot = tot ++,tmp = newroot;
c[newroot] = c[root] + val;
int l = ,r = m;
while(l <r)
{
int mid = (l+r)>>;
if(pos <= mid)
{
lson[newroot] = tot++;
rson[newroot] = rson[root];
newroot = lson[newroot];
root = lson[root];
r = mid;
}
else
{
rson[newroot] = tot ++;
lson[newroot] = lson[root];
newroot = rson[newroot];
root = rson[root];
l = mid + ;
}
c[newroot] = c[root] + val;
}
return tmp; }
int query(int left_root,int right_root,int k)
{
int l = ,r = m;
while(l < r)
{
int mid = (l+r) >> ;
if(c[lson[left_root]] - c[lson[right_root]] >= k)
{
r = mid;
left_root = lson[left_root];
right_root = lson[right_root];
}
else
{
l = mid + ;
k -= c[lson[left_root]] - c[lson[right_root]];
left_root = rson[left_root];
right_root = rson[right_root];
}
}
return l;
}
int main()
{
scanf("%d%d",&n,&q);
tot = ;
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
Init_hash();
T[n+] = build(,m);
for(int i=n;i;i--)
{
int pos = Hash(a[i]);
T[i] = update(T[i+],pos,);
}
while(q--)
{
int l,r,k;
scanf("%d%d%d",&l,&r,&k);
printf("%d\n",t[query(T[l],T[r+],k)]);
}
}
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<stack>
#include<cstdlib>
#include<queue>
#include<set>
#include<string.h>
#include<vector>
#include<deque>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f3f3f3f3f
#define inf 0x3f3f3f3f
#define eps 1e-4
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
typedef long long LL;
typedef long long ll;
const int maxn = 2e5 + ;
const int mod = ;
int n,m,a[maxn],root[maxn],cnt;
vector<int>v;
struct node{
int l,r,sum;
}T[maxn * ];
int getid(int x) {
return lower_bound(v.begin(),v.end(),x) - v.begin() + ;
}
void update(int l,int r,int &x,int y,int pos) {
T[++cnt] = T[y],T[cnt].sum ++,x = cnt;
if(l == r) return;
int mid = (l + r) / ;
if(mid >= pos) update(l,mid,T[x].l,T[y].l,pos);
else update(mid + ,r,T[x].r,T[y].r,pos);
}
int query(int l,int r,int x,int y,int k) {
if(l == r) return l;
int mid = (l + r) / ;
int sum = T[T[y].l].sum - T[T[x].l].sum;
if(sum >= k) return query(l,mid,T[x].l,T[y].l,k);
else return query(mid + ,r,T[x].r,T[y].r,k - sum);
}
void init() {
cnt = ;
memset(root,,sizeof root);
}
int main()
{
init();
scanf("%d %d",&n,&m);
for (int i = ; i <= n; ++i) {
scanf("%d",&a[i]);
v.push_back(a[i]);
}
sort(v.begin(),v.end());
v.erase(unique(v.begin(),v.end()),v.end());
for (int i = ; i <= n; ++i)
update(,n,root[i],root[i - ],getid(a[i]));
for (int i = ; i <= m; ++i) {
int x,y,k;
scanf("%d %d %d",&x, &y, &k);
printf("%d\n",v[query(,n,root[x - ],root[y],k) - ]);
}
}
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<stack>
#include<cstdlib>
#include<queue>
#include<set>
#include<string.h>
#include<vector>
#include<deque>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f3f3f3f3f
#define inf 0x3f3f3f3f
#define eps 1e-4
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
typedef long long LL;
typedef long long ll;
const int maxn = 2e5 + ;
const int mod = ;
int n,m,a[maxn],root[maxn],cnt;
/*
root:代表每个历史版本线段树的根节点位置
cnt:用作开辟新的树节点
*/
vector<int>v;
struct node{
int l,r,sum;
}T[maxn * ]; //线段树区间统计,sum代表在这个区间数的个数
int getid(int x) { //获取离散数组后的下标
return lower_bound(v.begin(),v.end(),x) - v.begin() + ;
}
/*
update函数:
y代表前一棵树的节点位置,x是后面的节点位置
*/
void update(int l,int r,int &x,int y,int pos) {
//&x 引用节点指针扩展新节点
T[++cnt] = T[y],T[cnt].sum ++,x = cnt; //新开节点,将需要修改的树节点复制到新开辟节点,改变自己的sum
if(l == r) return;
int mid = (l + r) / ;
if(mid >= pos) update(l,mid,T[x].l,T[y].l,pos); //节点左边
else update(mid + ,r,T[x].r,T[y].r,pos); //节点右边
}
int query(int l,int r,int x,int y,int k) {
if(l == r) return l;
int mid = (l + r) / ;
int sum = T[T[y].l].sum - T[T[x].l].sum; //两颗线段树sum做差
if(sum >= k) return query(l,mid,T[x].l,T[y].l,k); //如果当前的结点个数sum比k要大的话,说明第k大的结点在左子树当中,就去遍历左子树
else return query(mid + ,r,T[x].r,T[y].r,k - sum); //如果当前的结点个数sum比k要小的话,说明第k大的结点在右子树当中,而左子树的结点个数是sum个,那就去找右子树中的第k-sum的数
}
void init() {
cnt = ;
memset(root,,sizeof root);
}
int main()
{
init();
scanf("%d %d",&n,&m);
for (int i = ; i <= n; ++i) {
scanf("%d",&a[i]);
v.push_back(a[i]); //离散化数组
}
sort(v.begin(),v.end()); //离散化数组
v.erase(unique(v.begin(),v.end()),v.end()); //离散化数组 for (int i = ; i <= n; ++i) {
update(, n, root[i], root[i - ], getid(a[i]));
}
for (int i = ; i <= m; ++i) {
int x,y,k;
scanf("%d %d %d",&x, &y, &k);
printf("%d\n",v[query(,n,root[x - ],root[y],k) - ]);
}
}

K-th Number POJ - 2104的更多相关文章

  1. K-th Number Poj - 2104 主席树

    K-th Number Poj - 2104 主席树 题意 给你n数字,然后有m次询问,询问一段区间内的第k小的数. 解题思路 这个题是限时训练做的题,我不会,看到这个题我开始是拒绝的,虽然题意清晰简 ...

  2. 主席树 【权值线段树】 && 例题K-th Number POJ - 2104

    一.主席树与权值线段树区别 主席树是由许多权值线段树构成,单独的权值线段树只能解决寻找整个区间第k大/小值问题(什么叫整个区间,比如你对区间[1,8]建立一颗对应权值线段树,那么你不能询问区间[2,5 ...

  3. K-th Number POJ - 2104 划分树

    K-th Number You are working for Macrohard company in data structures department. After failing your ...

  4. HDU 2665.Kth number-可持久化线段树(无修改区间第K小)模板 (POJ 2104.K-th Number 、洛谷 P3834 【模板】可持久化线段树 1(主席树)只是输入格式不一样,其他几乎都一样的)

    Kth number Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  5. AC日记——K-th Number poj 2104

    K-th Number Time Limit: 20000MS   Memory Limit: 65536K Total Submissions: 52348   Accepted: 17985 Ca ...

  6. hdu 2665 Kth number (poj 2104 K-th Number) 划分树

    划分树的基本功能是,对一个给定的数组,求区间[l,r]内的第k大(小)数. 划分树的基本思想是分治,每次查询复杂度为O(log(n)),n是数组规模. 具体原理见http://baike.baidu. ...

  7. POJ 2104&HDU 2665 Kth number(主席树入门+离散化)

    K-th Number Time Limit: 20000MS   Memory Limit: 65536K Total Submissions: 50247   Accepted: 17101 Ca ...

  8. poj 2104 K-th Number 主席树+超级详细解释

    poj 2104 K-th Number 主席树+超级详细解释 传送门:K-th Number 题目大意:给出一段数列,让你求[L,R]区间内第几大的数字! 在这里先介绍一下主席树! 如果想了解什么是 ...

  9. poj 2104 K-th Number(主席树,详细有用)

    poj 2104 K-th Number(主席树) 主席树就是持久化的线段树,添加的时候,每更新了一个节点的线段树都被保存下来了. 查询区间[L,R]操作的时候,只需要用第R棵树减去第L-1棵树就是区 ...

随机推荐

  1. shiro web环境初始化过程

    在web工程中使用shiro的时候需要配置一个shiro的listenser(EnvironmentLoaderListener)和一个shiro的filter(ShiroFilter). liste ...

  2. OpenStack Ocata Telemetry 警告服务部署

    下列操作在控制节点上进行: 1 准备条件 在配置OpenStack Telemetry服务之前,你必须创建数据库.服务凭证和API端点. 1.1 数据库 以root用户连接数据库服务器,创建glanc ...

  3. EasyUI Combobox 的 onChange,onSelect,onClick 事件

    EasyUI 中 Combobox 选项发生改变时会触发 onChange,onSelect,onClick,3 个事件.最近要做一个级联的 Combo 菜单,类似于选择地址时让用户填写省,市,区的菜 ...

  4. 常用工具使用(sublimeText)

    1.sublime Text  (插件的安装,删除,更新) 1.1 使用 ctrl+`快捷键(Esc下面的波浪线按钮) 或者 菜单项View > Show Console 来调出命令界面,下面代 ...

  5. FPGA工具篇——编辑器Notepad++

    body { font-family: 微软雅黑,"Microsoft YaHei", Georgia,Helvetica,Arial,sans-serif,宋体, PMingLi ...

  6. 集成Ehcache用来缓存表以后,怎么设置缓存刷新时间

    问答 集成Ehcache用来缓存表以后,怎么设置缓存刷新时间  发布于 217天前  作者 老司机  93 次浏览  复制  上一个帖子  下一个帖子  标签: 无 集成Ehcache用来缓存表以后, ...

  7. Aizu 0033 Ball(dfs,贪心)

    日文题面...题意:是把一连串的有编号的球往左或者往右边放.问能不能两边都升序. 记录左边和右边最上面的球编号大小,没有就-1,dfs往能放的上面放. #include<bits/stdc++. ...

  8. UVALive 4731 Cellular Network(贪心,dp)

    分析: 状态是一些有序的集合,这些集合互不相交,并集为所有区域.显然枚举集合元素是哪些是无法承受的, 写出期望的计算式,会发现,当每个集合的大小确定了以后,概率大的优先访问是最优的. 因此先对u从大到 ...

  9. NOIP2018提高组Day2 解题报告

    前言 关于\(NOIP2018\),详见此博客:NOIP2018学军中学游记(11.09~11.11). \(Day2\)的题目和\(Day1\)比起来,真的是难了很多啊. \(T1\):旅行(点此看 ...

  10. 【洛谷1337】[JSOI2004] 吊打XXX(模拟退火经典题)

    点此看题面 大致题意: 一个平面上有\(n\)个点,每个点有1个权值,现在要选择平面上的一个点,使这\(n\)个点的权值乘上到达选定点的距离之和最小. 模拟退火 我们可以用模拟退火来做这道题. 先将\ ...