Halloween treats

Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts, the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.

Your job is to help the children and present a solution.

Input

The input contains several test cases.

The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line contains n space separated integers a1 , … , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit neighbour i.

The last test case is followed by two zeros.

Output

For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets). If there is no solution where each child gets at least one sweet print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.

Sample Input

4 5
1 2 3 7 5
3 6
7 11 2 5 13 17
0 0

Sample Output

3 5
2 3 4

题意 万圣节要糖,c个人,n个邻居,应该找那几个邻居要糖可以刚好平分。

题解 不存在没有的情况。抽屉原理,用两个数组存第一个存sum[i]%c,第二个存相同mod的位置,然后输出两个相同取余结果之间的位置。

一开始暴力超时,后来空间换时间。

#include<stdio.h>
#include<cstring>
long long a[100010];
long long sum[100010];
int main()
{
int c,n;
while(scanf("%d%d",&c,&n)!=EOF)
{
if(c==0&&n==0)
break;
else
{
memset(a,0,sizeof(a));
long long sum1=0;
int s;
int flag=0;
int k;
for(int i=1;i<=n;i++)
{
int s;
scanf("%d",&s);
sum1+=s;
sum[i]=sum1%c;
}
int i;
a[0]=1;
for(i=1;i<=n;i++)
{
if(a[sum[i]]) break ;
else
a[sum[i]]=i+1;
}
for(int j=a[sum[i]];j<=i-1;j++)
printf("%d ",j);
printf("%d\n",i);
} }
return 0;
}

POJ 3370 Halloween treats(抽屉原理)的更多相关文章

  1. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  2. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6631   Accepted: 2448 ...

  3. POJ 3370 Halloween treats 鸽巢原理 解题

    Halloween treats 和POJ2356差点儿相同. 事实上这种数列能够有非常多,也能够有不连续的,只是利用鸽巢原理就是方便找到了连续的数列.并且有这种数列也必然能够找到. #include ...

  4. [POJ 3370] Halloween treats

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7143   Accepted: 2641 ...

  5. uva 11237 - Halloween treats(抽屉原理)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011328934/article/details/37612503 题目链接:uva 11237 ...

  6. POJ 3370 Halloween treats( 鸽巢原理简单题 )

    链接:传送门 题意:万圣节到了,有 c 个小朋友向 n 个住户要糖果,根据以往的经验,第i个住户会给他们a[ i ]颗糖果,但是为了和谐起见,小朋友们决定要来的糖果要能平分,所以他们只会选择一部分住户 ...

  7. poj 3370 Halloween treats(鸽巢原理)

    Description Every year there is the same problem at Halloween: Each neighbour is only willing to giv ...

  8. 鸽巢原理应用-分糖果 POJ 3370 Halloween treats

    基本原理:n+1只鸽子飞回n个鸽笼至少有一个鸽笼含有不少于2只的鸽子. 很简单,应用却也很多,很巧妙,看例题: Description Every year there is the same pro ...

  9. UVA 11237 - Halloween treats(鸽笼原理)

    11237 - Halloween treats option=com_onlinejudge&Itemid=8&page=show_problem&category=516& ...

随机推荐

  1. js函数获取ev对象

    今天工作中遇到一个问题,就是平时获取一个ev(event)对象时候一般直接在调用方法里面写一个ev参数,即可直接拿到这个对象,但是有时候会遇到函数调用不是直接加在一个dom对象的后面,如: var o ...

  2. AppScale3.01

    平台: Ubuntu 类型: 虚拟机镜像 软件包: appscale appscale-tools app appscale appserver basic software cloud comput ...

  3. 时序js插件cubism使用

    document http://iwantmyreal.name/blog/2012/09/16/visualising-conair-data-with-cubism-dot-js https:// ...

  4. 数据库SQL优化大总结之 百万级数据库优化方案2

      网上关于SQL优化的教程很多,但是比较杂乱.近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充. 这篇文章我花费了大量的时间查找资料.修改.排版,希望大家阅读之后, ...

  5. linux 后渗透测试

    学习参考: http://weibo.com/1869235073/B9Seswf9R?type=comment http://weibo.com/p/1001603723521007220513 h ...

  6. wordpress中一些喜欢的主题

    Personal lite Bhari Blogi

  7. Cygwin 下的 自动安装工具 apt-cyg

    类似 于apt-get 或者 yum Cygwin可以在Windows下使用unix环境Bash和各种功能强大的工具,对于Linux管理员来说不想使用Linux桌面是必备的工具. Cygwin下也有类 ...

  8. NYOJ-22-素数求和问题

    原题地址 素数求和问题 描述 现在给你N个数(0<N<1000),现在要求你写出一个程序,找出这N个数中的所有素数,并求和. 输入 第一行给出整数M(0<M<10)代表多少组测 ...

  9. 从暴力匹配到KMP算法

    前言 现在有两个字符串:\(s1\)和\(s2\),现在要你输出\(s2\)在\(s1\)当中每一次出现的位置,你会怎么做? 暴力匹配算法 基本思路 用两个指针分别指向当前匹配到的位置,并对当前状态进 ...

  10. 动态规划专题(三)——数位DP

    前言 数位\(DP\) 真的是最恶心的\(DP\). 简介 看到那种给你两个数,让你求这两个数之间符合条件的数的个数,且这两个数非常大,这样的题目一般就是 数位\(DP\) 题. 数位\(DP\)一般 ...