#include<iostream>
#define INF 105
using namespace std;
int main()
{
int n,m,d[][],mark,x,y,g;
while(cin>>n>>m)
{
mark=;
g=;
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
if(i==j)
d[i][j]=;
else
d[i][j]=INF;
}
}
for(int i=;i<m;i++)
{
cin>>x>>y;
d[x][y]=;
d[y][x]=;
}
for(int k=;k<n;k++)
for(int i=;i<n;i++)
for(int j=;j<n;j++)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
if(d[i][j]>)
{
g=;
break;
}
}
if(g==)
break;
}
if(g==)
cout<<"No"<<endl;
else
cout<<"Yes"<<endl;
}
}

多源最短路径floyd的更多相关文章

  1. 单源最短路径Dijkstra算法,多源最短路径Floyd算法

    1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...

  2. 多源最短路径Floyd算法

    多源最短路径是求图中任意两点间的最短路,采用动态规划算法,也称为Floyd算法.将顶点编号为0,1,2...n-1首先定义dis[i][j][k]为顶点 i 到 j 的最短路径,且这条路径只经过最大编 ...

  3. 单源最短路径——Floyd算法

    正如我们所知道的,Floyd算法用于求最短路径.Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3). Floyd算法的基本思想如下:从任意 ...

  4. 全源最短路径 - floyd算法 - O(N ^ 3)

    Floyd-Warshall算法的原理是动态规划. 设Di,j,k为从i到j的只以(1..k)集合中的节点为中间节点的最短路径的长度. 若最短路径经过点k,则Di,j,k = Di,k,k − 1 + ...

  5. 多源最短路径,一文搞懂Floyd算法

    前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...

  6. 图->最短路径->多源最短路径(弗洛伊德算法Floyd)

    文字描述 求每一对顶点间的最短路径,可以每次以一个顶点为源点,重复执行迪杰斯特拉算法n次.这样,便可求得每一对顶点之间的最短路径.总的执行时间为n^3.但是还有另外一种求每一对顶点间最短路径的方法,就 ...

  7. 多源最短路径算法—Floyd算法

    前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...

  8. [C++]多源最短路径(带权有向图):【Floyd算法(动态规划法)】 VS n*Dijkstra算法(贪心算法)

    1 Floyd算法 1.1 解决问题/提出背景 多源最短路径(带权有向图中,求每一对顶点之间的最短路径) 方案一:弗洛伊德(Floyd算法)算法 算法思想:动态规划法 时间复杂度:O(n^3) 形式上 ...

  9. 多源最短路径算法:Floyd算法

    前言 由于本人太菜,这里不讨论Floyd的正确性. 简介 多源最短路径,解决的是求从图中任意两点之间的最短路径的问题. 分析 代码短小精悍,主要代码只有四行,直接放上: for(int k=1;k&l ...

随机推荐

  1. PHP中正则表达式学习及应用(四)

    正则表达式在PHP中的应用 1.匹配功能 2.替换功能 3.分割功能 例如: <?php $str="addsds{title}hfksjd{author}hfjdkjd{conn}j ...

  2. POJ3696【欧拉函数+欧拉定理】

    题意: 求最小T,满足L的倍数且都由8组成,求长度: 思路: 很强势的福利:点 图片拿出去食用更优 //#include<bits/stdc++.h> #include<cstdio ...

  3. Cocos2d-x-html5之HelloWorld深入分析与调试

    Cocos2d-x-html5之HelloWorld深入分析与调试 另:本章所用Cocos2d-x版本为: Cocos2d-html5-v2.1.1 http://cn.cocos2d-x.org/d ...

  4. PJzhang:百度网盘是如何泄露公司机密的?

    猫宁!!! 参考链接:https://mp.weixin.qq.com/s/PLELMu8cVleOLlwRAAYPVg 百度网盘在中国一家独大,百度超级会员具有很多特权,尤其是在下载速度上,是普通会 ...

  5. assembly x86(nasm)选择排序

    有一个首地址为NUM的N字无序无符号整数数组,编制程序采用选择排序法使该数组中的数按照从小到大的次序排序输出. 选择排序: data segment message db 'This is a pro ...

  6. (转)cookie和session的区别

    转自 http://www.cnblogs.com/shiyangxt/archive/2008/10/07/1305506.html http://justsee.iteye.com/blog/15 ...

  7. bzoj1130:[POI2008]POD Subdivision of Kingdom

    传送门 看到数据范围这么小,不由得算了一下暴力复杂度,算出来情况一共只有1e7,不多,再乘上暴力判断的复杂度,好像T了,判断的话位运算可以方便解决 但是我写的优化似乎比较渣,还留了个log,但是还是n ...

  8. JMeter中的HTTPS套接字错误

    Apache JMeter对启用SSL的应用程序执行性能和/或负载测试时,SSL套接字错误可能是经常遇到的麻烦,严重阻碍了您的测试工作.本文重点介绍如何通过相应地配置和调优JMeter来克服这些与连接 ...

  9. Codeforces Round #541 (Div. 2) C.Birthday

    链接:https://codeforces.com/contest/1131/problem/C 题意: 求给的n个数,相邻差值最小的排列方式.1-n相邻. 思路: sort后隔一个取一个,取到底后再 ...

  10. 转 怎样解读10046 trace (tkprof 的结果 )

    set autot on SQL> set autotraceUsage: SET AUTOT[RACE] {OFF | ON | TRACE[ONLY]} [EXP[LAIN]] [STAT[ ...