[HNOI2010] 物品调度 fsk
标签:链表+数论知识。
题解:
对于这道题,其实就是两个问题的拼凑,我们分开来看。
首先要求xi与yi。这个可以发现,x每增加1,则pos增加d;y每增加1,则pos增加1。然后,我们把x与y分别写在二维平面上,比如样例:
x= 0 1
y=0 {0 4}
y=1 {1 5}
y=2 {2 6}
y=3 {3 7}
发现行数=gcd(n,d),列数=n/gcd(n,d)。
那么题目要求y尽量小,然后x尽量小。我们先求y,那么初始pos就是ci,把ci放入这张表,寻找最近的可以不重复的行,也就是y。找到之后我们再把ci+y代入,去找在第y行的哪一个数是最近的,这样就能找到x与y了。
具体的:我们使用rx[i],代表x=i时,右边那个可用的是哪一个,rx_cnt[i]代表距离。同样ry[i],与ry_cnt[i]分别表示y=i的下面的哪一个与距离。每次修改(也就是标记Val已经被使用)仅仅需要对于(Val+d)%n即可,然后rx[Val]=(Val+d)%n,rx_cnt[Val]=1。将Val%=gcd,即可完成对于y的修改。
修改那么简单,那么查询:类似并查集一样的进行路径压缩,即如果rx[Val]被使用,那么rx[Val]=find(rx[Val]),对应修改rx_cnt[Val]即可,然后返回rx_cnt[Val]为x的值,y同样如此。
解决了这个问题,下面求解最小步数就很简单了。我们在纸上将i与pos[i]连上一条边,发现会构成很多个环,如果这个环中有0,那么直接把0按照环的反方向依次移动,即可把整个环都归位,如果环中没有0,那么先把0移进去,归位之后再移出来,步数+2即可,这样是最优的方案。证明可以使用置换群什么的。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;
const int MAXN=;
bool vis[MAXN];
int T,n,s,q,p,m,d,ans;
int c[MAXN],pos[MAXN],cnt[MAXN],rx[MAXN],ry[MAXN],rx_cnt[MAXN],ry_cnt[MAXN];
inline int gi(){int res; scanf("%d",&res); return res;}
int gcd(int A,int B)
{
if(A%B==)return B;
return gcd(B,A%B);
}
void insert(int x)
{
int tmp;
if((tmp=x+d)>=n)tmp-=n;
rx[x]=tmp;
rx_cnt[x]=;
x%=m;
if(--cnt[x])return;
if((tmp=x+)>=m)tmp-=m;
ry[x]=tmp;
ry_cnt[x]=;
}
int query(int *r,int *r_cnt,int x)
{
if(r[x]==x)return ;
r_cnt[x]=r_cnt[x] + query(r,r_cnt,r[x]);
r[x]=r[r[x]];
return r_cnt[x];
}
int main()
{
T=gi();
while(T--)
{
scanf("%d%d%d%d%d%d",&n,&s,&q,&p,&m,&d); pos[]=s;
for(int i=;i<n;i++) c[i]=((LL)c[i-]*q+p)%m;
d%=n;//insert()中没有使用取模,而是使用减法代替,所以这里先模一下。
m=gcd(n,d);
for(int i=;i<m;i++)
{
cnt[i]=n/m;
ry[i]=i;
ry_cnt[i]=;
}
for(int i=;i<n;i++) rx[i]=i,rx_cnt[i]=;
insert(pos[]);
for(int i=;i<n;i++)
{
int y=query(ry,ry_cnt,c[i]%m);
int x=query(rx,rx_cnt,(c[i]+y)%n);
pos[i]=((LL)d*x+y+c[i])%n;
insert(pos[i]);
}
ans=; memset(vis,,sizeof vis);
for(int i=;i<n;i++)
if(!vis[i])
{
int now=i,Start=i,flag=,cnt=;
do
{
vis[now]=; cnt++;
if(now==)flag=;
now=pos[now];
}while(now!=Start);
if(cnt>)
{
ans+=cnt-;
if(!flag)ans+=;
}
}
printf("%d\n",ans);
}
return ;
}
[HNOI2010] 物品调度 fsk的更多相关文章
- 【BZOJ1998】[HNOI2010]物品调度(并查集,模拟)
[BZOJ1998][HNOI2010]物品调度(并查集,模拟) 题面 BZOJ,为啥这题都是权限题啊? 洛谷 题解 先不管\(0\)位置是个空,把它也看成一个箱子.那么最终的答案显然和置换循环节的个 ...
- [HNOI2010]物品调度
题目描述 现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位.流水线上有n个位置,从0到n-1依次编号,一开始0号位置空,其它的位置i上有编号为i的盒子.Lostm ...
- P3207 [HNOI2010]物品调度
传送门 完了题目看错了--还以为所有的\(x,y\)都要一样--结果题解都没看懂-- 先考虑如果已经求出了所有的\(pos\)要怎么办,那么我们可以把\(0\)也看做是一个箱子,然后最后每个箱子都在一 ...
- [BZOJ1998][Hnoi2010]Fsk物品调度
[BZOJ1998][Hnoi2010]Fsk物品调度 试题描述 现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位.流水线上有n个位置,从0到n-1依次编号,一开 ...
- 【BZOJ 1998】 1998: [Hnoi2010]Fsk物品调度(双向链表+并查集+置换)
1998: [Hnoi2010]Fsk物品调度 Description 现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位.流水线上有n个位置,从0到n-1依次编号 ...
- BZOJ_1998_[Hnoi2010]Fsk物品调度_并查集+置换
BZOJ_1998_[Hnoi2010]Fsk物品调度_并查集+置换 Description 现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位.流水线上有n个位置 ...
- 【BZOJ】1998: [Hnoi2010]Fsk物品调度
http://www.lydsy.com/JudgeOnline/problem.php?id=1998 题意: 给你6个整数$n,s,q,p,m,d$. 有$n$个位置和$n-1$个盒子,位置编号从 ...
- BZOJ 1998: [Hnoi2010]Fsk物品调度 [置换群 并查集]
传送门 流水线上有n个位置,从0到n-1依次编号,一开始0号位置空,其它的位置i上有编号为i的盒子.Lostmonkey要按照以下规则重新排列这些盒子. 规则由5个数描述,q,p,m,d,s,s表示空 ...
- 【BZOJ 1998】[Hnoi2010]Fsk物品调度 置换群+并查集
置换群的部分水得一比,据说是经典的置换群理论(然而我并不知道这理论是啥).重点就在于怎么求pos!!!容易发现这个东西是这样的:每次寻找pos,先在本环里找,找不到再往下一个环里找,直到找到为止……一 ...
随机推荐
- Conditions in bash scripting (if statements)
Shell中判断语句if中-z至-d的意思 - sunny_2015 - 博客园 https://www.cnblogs.com/coffy/p/5748292.html Conditions in ...
- tomcat安装后问题解决
tomcat安装后问题解决 (1)tomcat无法正常启动的原因分析 JAVA_HOME 配置错误,或者没有配置 如果你的机器已经占有了8080 端口,则无法启动, 解决方法 (1) 你可以808 ...
- 微信小程序开发:学习笔记[9]——本地数据缓存
微信小程序开发:学习笔记[9]——本地数据缓存 快速开始 说明 本地数据缓存是小程序存储在当前设备上硬盘上的数据,本地数据缓存有非常多的用途,我们可以利用本地数据缓存来存储用户在小程序上产生的操作,在 ...
- 人生苦短之Python迭代器
迭代 在Python中,如果给定一个list或者touple,我们可以通过for循环来遍历,将值依次取出,这种遍历称为迭代. 在Python中是通过for...in..来进行遍历的,在Java中则是 ...
- java连接oracle的几种方式
jdbc连接(驱动包ojdbc6.jar)String driver = "oracle.jdbc.OracleDriver"; //驱动标识符 String url = &quo ...
- Java 发送Get和Post请求
package com.htpt.superviseServices.dm.util; import java.io.BufferedReader; import java.io.IOExceptio ...
- 为什么要把页面放在 WEB-INF 路径下?
1.基于不同的功能 JSP 被放置在不同的目录下 这种方法的问题是这些页面文件容易被偷看到源代码,或被直接调用.某些场合下这可能不是个大问题,可是在特定情形中却可能构成安全隐患.用户可以绕过Strut ...
- 使用NSTask调用shell
- (NSString *)cmd:(NSString *)cmd { // 初始化并设置shell路径 NSTask *task = [[NSTask alloc] init]; [task set ...
- {{badmatch, {error, eexist}}
今天在编译cowboy工程在resolve release build时提示编译错误:{{badmatch, {error, eexist}} 后经调查可能是因为rebar的bug导致的,可是删除_b ...
- 洛谷 1072 Hankson 的趣味题——质因数界限讨论
题目:https://www.luogu.org/problemnew/show/P1072 思路是把每个数质因数分解,答案对于每个质因数的次数有选择的区间,通过这个计算. 指数的限制就是上限是b1, ...