【BZOJ2216】[Poi2011]Lightning Conductor

Description

已知一个长度为n的序列a1,a2,...,an。
对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j))

Input

第一行n,(1<=n<=500000)
下面每行一个整数,其中第i行是ai。(0<=ai<=1000000000)

Output

n行,第i行表示对于i,得到的p

Sample Input

6
5
3
2
4
2
4

Sample Output

2
3
5
3
5
4

题解:决策单调性不只是斜率优化~

p>=aj-ai+sqrt(abs(i-j)),有绝对值怎么办?拆开讨论两边就行。

你会发现,sqrt函数的增长是越来越慢的,也就意味着如果存在i<j<k,且对于k来说j比i更优,那么之后的i再也不会比j优了。我们想找到的,就是当前节点最远能更新到哪个点。

不难发现,每个点能做出贡献的区间是一段连续的区间(可能为空)。我们可以用双向队列来找出每个点能作用的区间的左右端点lp和rp,具体方法:

1.枚举到当前点i时,先更新i的答案,然后将队首的lp改为i,如果队首lp>rp,则弹出队首。
2.如果队列不为空,且i对于n不如队尾优,说明i永远干不掉队尾,则不将i加入队列。
否则,如果i对于lp[队尾]比队尾更优,则弹出队尾。最后,i干掉队尾的位置就落在lp[队尾]和rp[队尾]之间,二分一下即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=500010;
int n,h,t;
int lp[maxn],rp[maxn],v[maxn],p[maxn],q[maxn];
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
double solve(int a,int b)
{
return v[a]-v[b]+sqrt(abs(b-a));
}
int main()
{
n=rd();
int i,l,r,mid;
for(i=1;i<=n;i++) v[i]=rd();
for(h=1,t=0,i=1;i<=n;i++)
{
while(h<=t&&rp[q[h]]<i) h++;
if(h<=t) lp[q[h]]=i,p[i]=max(p[i],(int)ceil(solve(q[h],i)));
if(h>t||solve(i,n)>solve(q[t],n))
{
rp[i]=n;
while(h<=t&&solve(i,lp[q[t]])>=solve(q[t],lp[q[t]])) t--;
if(h<=t)
{
l=lp[q[t]],r=rp[q[t]]+1;
while(l<r)
{
mid=l+r>>1;
if(solve(i,mid)<solve(q[t],mid)) l=mid+1;
else r=mid;
}
rp[q[t]]=l-1,lp[i]=l;
}
else lp[i]=i+1;
q[++t]=i;
}
}
for(h=1,t=0,i=n;i>=1;i--)
{
while(h<=t&&lp[q[h]]>i) h++;
if(h<=t) rp[q[h]]=i,p[i]=max(p[i],(int)ceil(solve(q[h],i)));
if(h>t||solve(i,1)>solve(q[t],1))
{
lp[i]=1;
while(h<=t&&solve(i,rp[q[t]])>=solve(q[t],rp[q[t]])) t--;
if(h<=t)
{
l=lp[q[t]],r=rp[q[t]];
while(l<r)
{
mid=l+r>>1;
if(solve(i,mid)<solve(q[t],mid)) r=mid;
else l=mid+1;
}
lp[q[t]]=r,rp[i]=r-1;
}
else rp[i]=i-1;
q[++t]=i;
}
}
for(i=1;i<=n;i++) printf("%d\n",p[i]);
return 0;
}

【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性的更多相关文章

  1. P3515 [POI2011]Lightning Conductor[决策单调性优化]

    给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...

  2. LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP

    传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\) ...

  3. BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性

    BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性 Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n, ...

  4. BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】

    题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...

  5. BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】

    Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...

  6. bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)

    每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #incl ...

  7. BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)

    题意 题目链接 Sol 很nice的决策单调性题目 首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$. 按套路把绝对值拆掉,$p_i = ...

  8. 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP

    题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...

  9. BZOJ2216 : [Poi2011]Lightning Conductor

    $f[i]=\max(a[j]+\lceil\sqrt{|i-j|}\rceil)$, 拆开绝对值,考虑j<i,则决策具有单调性,j>i同理, 所以可以用分治$O(n\log n)$解决. ...

随机推荐

  1. [Codeforces Round #297 Div. 2] E. Anya and Cubes

    http://codeforces.com/contest/525/problem/E 学习了传说中的折半DFS/双向DFS 先搜前一半数,记录结果,然后再搜后一半数,匹配之前结果. #include ...

  2. 【NOIP2016练习】T1 挖金矿(二分答案)

    题意: 思路:二分答案A 合法的答案 sigma(s[i][xi])/sigma(xi)>=a i<=m sigma(s[i][xi]-a*xi)>=0 对于每个i找到xi使s[i] ...

  3. 【Linux】多进程与多线程之间的区别

    http://blog.csdn.net/byrsongqq/article/details/6339240 网络编程中设计并发服务器,使用多进程与多线程 ,请问有什么区别?  答案一: 1,进程:子 ...

  4. MySQL 源码编译安装

    脚本须知: 1. 该脚本目前只测试过mysql版本为5.6.x的源码,其他源码可以对本脚本稍作修改即可 2. 本脚本也可以使用wget mysql源码的方式进行,但考虑到后期提供源码的地址不可用,所以 ...

  5. tableView刷新中的问题

    在开始之前先上一张效果图 相信大家都看到了“店铺优惠”这一栏,在这里假设这一栏就是单独的一个cell,当无店铺优惠的时候不可点击在有店铺优惠的时候会弹出优惠列表,选中并返回时会刷新数据,所以弹出视图采 ...

  6. [转] 常用SQL查询语句

    sunada  的原文地址 常用SQL查询语句 一.简单查询语句 1. 查看表结构 SQL>DESC emp; 2. 查询所有列 SQL>SELECT * FROM emp; 3. 查询指 ...

  7. Mac环境下安装运行splash

    http://blog.csdn.net/chenhy8208/article/details/69391097 最近需要使用scrapy爬虫做一些开发,用到了splash.我本机是mac环境,跳着看 ...

  8. log4net菜鸟指南

    log4net的作用 提供一个记录日志的框架,可以将日志信息记录到文件(txt.xml等).控制台.Windows事件日志和数据库(MSSQL.Acess.Oracle.DB2和SQLite等). 要 ...

  9. Jquery:怎样让子窗体的div显示在父窗体之上

    <1> js或者jQuery訪问页面中的框架iframe.  注意:框架内的页面是不能跨域的! 如果有两个页面,在同样域下. 如果:父窗体  index.html ,有id 为 subif ...

  10. hibernater-validator jar包冲突的问题

    在引用hibernater-validator jar包时一直抛出异常,在引用带有该包的项目,或者同时在一个项目中使用该包和validator包都会抛出以下异常 最后发现是在Eclipse环境下,不能 ...