CF#508 1038E Maximum Matching
题解:
感觉还是比较妙的,复杂度看上去很高(其实也很高),但是因为n只有100,所以还是可以过的。
考虑一个很暴力的状态f[i][j][x][y]表示考虑取区间i ~ j的方格,左右端点颜色分别是x, y.的最大值。
那么有如下转移
1,直接继承子区间的答案
f[i][j][x][y] = max(f[i][k][x][y], f[k + 1][j][x][y]);//因为子区间就这2种,毕竟子区间一定比当前区间小,因此不靠在端点上的区间一定已经被靠在端点上的区间给取过max了。
2,由2段子区间拼凑而来,相当于枚举中间断开的地方是选了那个块.//如果中间断开的地方的块没有被选,那么一定可以找到一个被选的块作为断点(如果找不到就说明这整个区间内只取了端点,再转移也没有什么意义。)
翻转操作是不需要考虑的,因为可以在初始化的地方就处理掉,因此只需要在转移的地方考虑一下乱序继承即可。
即正常的顺序是[i, l] + [l + 1, j] = [i, j];
乱序则可以支持[l + 1][j] + [i, l] = [i, j];
所以对于这2种情况都转移一下,转移的时候必须要求相接的地方颜色相同即可。
注意因为有子区间相加转移的地方,所以初始化为极小值的时候不要太小了,不然太小了直接一加就爆了。
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 110
#define ac 6 int n, ans;
int f[AC][AC][ac][ac]; inline int read()
{
int x = ;char c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} void pre()
{
n = read();
memset(f, -, sizeof(f));
int a, b, c;
for(R i = ; i <= n; i ++)
{
a = read(), b = read(), c = read();
f[i][i][a][c] = f[i][i][c][a] = b;
}
} inline void upmax(int &a, int b)
{
if(b > a) a = b;
} void work()
{
for(R i = n; i; i --)
for(R j = i; j <= n; j ++)
for(R x = ; x <= ; x ++)
for(R y = ; y <= ; y ++)
{
for(R l = i; l < j; l ++)
{
upmax(f[i][j][x][y], max(f[i][l][x][y], f[l + ][j][x][y]));
for(R k = ; k <= ; k ++)
{
upmax(f[i][j][x][y], f[i][l][x][k] + f[l + ][j][k][y]);
upmax(f[i][j][x][y], f[i][l][k][y] + f[l + ][j][x][k]);
}
}
upmax(ans, f[i][j][x][y]);
}
printf("%d\n", ans);
} int main()
{
//freopen("in.in", "r", stdin);
pre();
work();
//fclose(stdin);
return ;
}
CF#508 1038E Maximum Matching的更多相关文章
- [Codeforces Round #508 (Div. 2)][Codeforces 1038E. Maximum Matching]
前几天给舍友讲这题的时候感觉挺有意思的,就贴上来吧... 题目链接:1038E - Maximum Matching 题目大意:有\(n\)个棒子,每个条两端有颜色\(c1,c2\)以及他的价值\(v ...
- Codeforces 1038E Maximum Matching
可能写了个假算法 假设定义:含有一个欧拉路的图为类欧拉图 欧拉路的定义:一个无向连通图中,存在一条路径对所有边都遍历且仅遍历一次:判断方法:该连通图中度为奇数的点的个数不能超过2,即为0或者2 题目解 ...
- Codeforces Round #508 (Div. 2) E. Maximum Matching(欧拉路径)
E. Maximum Matching 题目链接:https://codeforces.com/contest/1038/problem/E 题意: 给出n个项链,每条项链左边和右边都有一种颜色(范 ...
- Codeforces 1038 E - Maximum Matching
E - Maximum Matching 思路: 欧拉图 定理:一个度数为奇数的点的个数小于等于2的联通图存在欧拉回路 对于这道题目的图,点的个数为4,所以最坏的情况下4个点的度数都为奇数,在这种情况 ...
- [codeforces 508E]Maximum Matching
题目:Maximum Matching 传送门:http://codeforces.com/contest/1038/problem/E 分析: 一个块拥有{color1,val,color2},两个 ...
- cf#513 B. Maximum Sum of Digits
B. Maximum Sum of Digits time limit per test 2 seconds memory limit per test 512 megabytes input sta ...
- CF 353C Find Maximum #205 (Div. 2)
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; ]; ] ...
- SPOJ4206Fast Maximum Matching(hopcroft-karp)
题目请戳这里 题目大意:裸的二分匹配. 题目分析:数据比较强,用来测模版的.这题用hungry跑着会比较吃力,所以用hopcroft-karp算法.这个算法较hungry高效是因为每次bfs找到一个增 ...
- cf C. Find Maximum
http://codeforces.com/contest/353/problem/C 先预处理前i个数的和,然后找到第一个出现的1,然后变成0后的和与目前的和比较,如果大就更新. #include ...
随机推荐
- LWM2M的DISCOVER操作
1. 先看下DISCOVER的数据流,工作服务器下发的指令到设备客户端 2. 解释,这个操作是用来发现Object, Object Instances, and Resources的属性,同时可以发现 ...
- Ubuntu卡在logo界面
对于这个问题,我也是在最近一次偶然的机会中发现的. 我重装了了Ubuntu 18.04, 很多东西需要重新配置, 有个刚性需求就是配置shadowsocks实现***,对于从windows向linu ...
- Linux命令应用大词典-第43章iptables和arptables防火墙
43.1 iptables-save:保存iptables规则 43.2 iptables-restore:恢复iptables规则 43.3 iptables:IPv4数据包过滤和NAT管理工具 4 ...
- BehaviorDesigner学习
行为树: 行为树设计师插件是一个专门为unity设计的AI插件. 学习用!!!插件地址:链接:http://pan.baidu.com/s/1dF2okPN 密码:b43m 通过继承Behavior中 ...
- .NET中发送邮件的实现
.NET中发送邮件 注意: 1.引用下列命名空间: using System.Net; using System.Net.Mail; 2.确保你使用的发送邮件的邮箱开启了stamp服务等. /// & ...
- 前端开发工程师 - 01.页面制作 - 第4章.CSS
第4章.CSS CSS简介 Cascading Style Sheet 层叠样式表:定义页面中的表现样式 history: CSS1(1996)--CSS2(1998)--着手CSS3草案(拆分成很多 ...
- CSS让内部元素以相反的顺序显示
代码如下: <div id="main" style=" flex-direction: row-reverse;-webkit-flex-direction: r ...
- python函数学习之装饰器
装饰器 装饰器的本质是一个python函数,它的作用是在不对原函数做任何修改的同时,给函数添加一定的功能.装饰器的返回值也是一个函数对象. 分类: 1.不带参数的装饰器函数: def wrapper( ...
- JS验证验证服务器控件
JS验证验证服务器控件 <script language="javascript" type="text/javascript"> /******* ...
- Python3 数据类型-字符串
字符串是 Python 中最常用的数据类型,是一个个字符组成的有序的序列,是字符的集合. 一 字符串定义 创建字符串很简单,可以使用引号('或"或""")来创建 ...