https://www.lydsy.com/JudgeOnline/problem.php?id=3238

https://www.luogu.org/problemnew/show/P4248

参考:https://blog.csdn.net/Vmurder/article/details/42721101

第一道接触后缀树的题,然而不想讲这个东西。

我们只需要知道将串倒着建后缀自动机parent树就是后缀树即可。

然后两个后缀的lcp就是他们的lca的len。

设点u,则过点u的后缀就有su子树的size和个,所以能配出size[u]*(size[u]-1)/2个对,这条路径的长度贡献为(tr[u].l-tr[f].l)

PS:贡献不是tr[u].l,因为过u的后缀最长的不一定为tr[u].l,所以要一段一段处理。

#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cctype>
using namespace std;
typedef long long ll;
const int N=1e6+;
struct tree{
int a[],fa,l;
}tr[N];
struct node{
int to,nxt;
}e[N];
char s[N];
int last,cnt,tot,size[N],head[N];
inline void add(int u,int v){
e[++cnt].to=v;e[cnt].nxt=head[u];head[u]=cnt;
}
inline void insert(int c){
int p=last,np=++tot;
last=np;tr[np].l=tr[p].l+;
for(;p&&!tr[p].a[c];p=tr[p].fa)tr[p].a[c]=np;
if(!p)tr[np].fa=;
else{
int q=tr[p].a[c];
if(tr[p].l+==tr[q].l)tr[np].fa=q;
else{
int nq=++tot;tr[nq].l=tr[p].l+;
memcpy(tr[nq].a,tr[q].a,sizeof(tr[q].a));
tr[nq].fa=tr[q].fa;tr[q].fa=tr[np].fa=nq;
for(;p&&tr[p].a[c]==q;p=tr[p].fa)tr[p].a[c]=nq;
}
}
size[np]=;
}
ll ans=;
void dfs(int u,int f){
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
dfs(v,u);
size[u]+=size[v];
}
ans-=(ll)size[u]*(size[u]-)*(tr[u].l-tr[f].l);
}
int main(){
cin>>s+;
int n=strlen(s+);
last=tot=;
for(int i=n;i>=;i--)insert(s[i]-'a');
for(int i=;i<=tot;i++)add(tr[i].fa,i);
ans=(ll)(n-)*n*(n+)>>;
dfs(,);
printf("%lld\n",ans);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ3238:[AHOI2013]差异——题解的更多相关文章

  1. BZOJ3238 [Ahoi2013]差异 【SAM or SA】

    BZOJ3238 [Ahoi2013]差异 给定一个串,问其任意两个后缀的最长公共前缀长度的和 1.又是后缀,又是\(lcp\),很显然直接拿\(SA\)的\(height\)数组搞就好了,配合一下单 ...

  2. bzoj3238 [Ahoi2013]差异 后缀数组+单调栈

    [bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  3. [bzoj3238][Ahoi2013]差异_后缀数组_单调栈

    差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...

  4. BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】

    题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...

  5. BZOJ3238 [Ahoi2013]差异 SA+单调栈

    题面 戳这里 题解 考虑把要求的那个东西拆开算,前面一个东西像想怎么算怎么算,后面那个东西在建出\(height\)数组后相当于是求所有区间\(min\)的和*2,单调栈维护一波即可. #includ ...

  6. 洛谷 P4248 / loj 2377 [AHOI2013] 差异 题解【后缀自动机】【树形DP】

    可能是一个 SAM 常用技巧?感觉 SAM 的基础题好多啊.. 题目描述 给定一个长度为 \(n\) 的字符串 \(S\) ,令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀,求: \[ ...

  7. [BZOJ3238][AHOI2013]差异(后缀数组)

    求和式的前两项可以直接算,问题是对于每对i,j计算LCP. 一个比较显然的性质是,LCP(i,j)是h[rk[i]+1~rk[j]]中的最小值. 从h的每个元素角度考虑,就是对每个h计算有多少对i,j ...

  8. [BZOJ3238][Ahoi2013]差异解题报告|后缀数组

    Description 先分析一下题目,我们显然可以直接算出sigma(len[Ti]+len[Tj])的值=(n-1)*n*(n+1)/2 接着就要去算这个字符串中所有后缀的两两最长公共前缀总和 首 ...

  9. BZOJ3238: [Ahoi2013]差异 (后缀自动机)

    Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Output 54 HINT 2<=N< ...

随机推荐

  1. redis 学习笔记二

    redis启动: 直接 redis-server.exe 启动服务,是按照redis默认配置启动的,如果想按照自己的配置文件启动,要加上 redis-server.exe  redis.windows ...

  2. 关于 Windows 10 字体安装目录的问题

    不知从什么时候开始,本人台式机的Win10系统在安装字体的时候并不是安装到C:\Windows\Fonts目录中,而是安装到%USERPROFILE%\AppData\Local\Microsoft\ ...

  3. VIN码识别/车架号OCR识别:快速占领汽车后市场数据入口

    大数据时代,企业在数据入口方面的竞争越来越激烈,这种对于入口级的大数据“争夺战”,让很多企业在数据挖掘和收集的技术方面开始加快更新速度. 在当前IT行业激烈竞争环境之下,对于入口产品的控制成为了大数据 ...

  4. Siki_Unity_1-5_见缝插针

    1-5 见缝插针 任务1:资源下载 任务2:案例演示 任务3:创建工程和场景 Project Name:StickPin import素材,为两张png图 创建各个分类文件夹Scenes/ Prefa ...

  5. 简单说明hadoop集群运行三种模式和配置文件

    Hadoop的运行模式分为3种:本地运行模式,伪分布运行模式,集群运行模式,相应概念如下: 1.独立模式即本地运行模式(standalone或local mode)无需运行任何守护进程(daemon) ...

  6. 【MFC】VS2017新建完MFC后,没有界面,只有代码

    问题描述:双击.rc文件后提示在另一个编辑器中打开 解决方法整合: 1----- 打开工程之前先把.rc文件改个名称,然后打开工程双击解决方案管理器的.rc文件, 会显示"载入失败" ...

  7. 开源自动驾驶仿真平台 AirSim (1) - Unreal Engine

    AirSim 官方Github: https://github.com/Microsoft/AirSim AirSim 是微软的开源自动驾驶仿真平台(其实它还能做很多事情,这里主要用于自动驾驶仿真研究 ...

  8. C struct中的位域 bitfield

    C struct中的位域 bitfield 结构体的成员可以限制其位域,每个成员可以使用用比字节还小的取值范围,下面的结构体s1中,四个成员每个成员都是2bit的值(0~3),整个结构体占据的空间依然 ...

  9. 【转载】inotify+rsync实时同步 解决同步慢问题 (转载备记)

    原文地址:http://www.ttlsa.com/web/let-infotify-rsync-fast/ 背景 我们公司在用inotify+rsync做实时同步,来解决分布式集群文件一致性的问题. ...

  10. 十四:Using CGroups with YARN

        Cgroups可以控制linux 上应用程序的资源(内存.CPU)使用,yarn可以使用Cgroups来CPU使用.Cgroups的配置,在yarn-site.xml中设置: 1)启用Cgro ...