https://www.lydsy.com/JudgeOnline/problem.php?id=3238

https://www.luogu.org/problemnew/show/P4248

参考:https://blog.csdn.net/Vmurder/article/details/42721101

第一道接触后缀树的题,然而不想讲这个东西。

我们只需要知道将串倒着建后缀自动机parent树就是后缀树即可。

然后两个后缀的lcp就是他们的lca的len。

设点u,则过点u的后缀就有su子树的size和个,所以能配出size[u]*(size[u]-1)/2个对,这条路径的长度贡献为(tr[u].l-tr[f].l)

PS:贡献不是tr[u].l,因为过u的后缀最长的不一定为tr[u].l,所以要一段一段处理。

#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cctype>
using namespace std;
typedef long long ll;
const int N=1e6+;
struct tree{
int a[],fa,l;
}tr[N];
struct node{
int to,nxt;
}e[N];
char s[N];
int last,cnt,tot,size[N],head[N];
inline void add(int u,int v){
e[++cnt].to=v;e[cnt].nxt=head[u];head[u]=cnt;
}
inline void insert(int c){
int p=last,np=++tot;
last=np;tr[np].l=tr[p].l+;
for(;p&&!tr[p].a[c];p=tr[p].fa)tr[p].a[c]=np;
if(!p)tr[np].fa=;
else{
int q=tr[p].a[c];
if(tr[p].l+==tr[q].l)tr[np].fa=q;
else{
int nq=++tot;tr[nq].l=tr[p].l+;
memcpy(tr[nq].a,tr[q].a,sizeof(tr[q].a));
tr[nq].fa=tr[q].fa;tr[q].fa=tr[np].fa=nq;
for(;p&&tr[p].a[c]==q;p=tr[p].fa)tr[p].a[c]=nq;
}
}
size[np]=;
}
ll ans=;
void dfs(int u,int f){
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
dfs(v,u);
size[u]+=size[v];
}
ans-=(ll)size[u]*(size[u]-)*(tr[u].l-tr[f].l);
}
int main(){
cin>>s+;
int n=strlen(s+);
last=tot=;
for(int i=n;i>=;i--)insert(s[i]-'a');
for(int i=;i<=tot;i++)add(tr[i].fa,i);
ans=(ll)(n-)*n*(n+)>>;
dfs(,);
printf("%lld\n",ans);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ3238:[AHOI2013]差异——题解的更多相关文章

  1. BZOJ3238 [Ahoi2013]差异 【SAM or SA】

    BZOJ3238 [Ahoi2013]差异 给定一个串,问其任意两个后缀的最长公共前缀长度的和 1.又是后缀,又是\(lcp\),很显然直接拿\(SA\)的\(height\)数组搞就好了,配合一下单 ...

  2. bzoj3238 [Ahoi2013]差异 后缀数组+单调栈

    [bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  3. [bzoj3238][Ahoi2013]差异_后缀数组_单调栈

    差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...

  4. BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】

    题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...

  5. BZOJ3238 [Ahoi2013]差异 SA+单调栈

    题面 戳这里 题解 考虑把要求的那个东西拆开算,前面一个东西像想怎么算怎么算,后面那个东西在建出\(height\)数组后相当于是求所有区间\(min\)的和*2,单调栈维护一波即可. #includ ...

  6. 洛谷 P4248 / loj 2377 [AHOI2013] 差异 题解【后缀自动机】【树形DP】

    可能是一个 SAM 常用技巧?感觉 SAM 的基础题好多啊.. 题目描述 给定一个长度为 \(n\) 的字符串 \(S\) ,令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀,求: \[ ...

  7. [BZOJ3238][AHOI2013]差异(后缀数组)

    求和式的前两项可以直接算,问题是对于每对i,j计算LCP. 一个比较显然的性质是,LCP(i,j)是h[rk[i]+1~rk[j]]中的最小值. 从h的每个元素角度考虑,就是对每个h计算有多少对i,j ...

  8. [BZOJ3238][Ahoi2013]差异解题报告|后缀数组

    Description 先分析一下题目,我们显然可以直接算出sigma(len[Ti]+len[Tj])的值=(n-1)*n*(n+1)/2 接着就要去算这个字符串中所有后缀的两两最长公共前缀总和 首 ...

  9. BZOJ3238: [Ahoi2013]差异 (后缀自动机)

    Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Output 54 HINT 2<=N< ...

随机推荐

  1. 在Sqlserver中生成随机数据

    百度了各种随机生成,集中摘录如下: 一.循环写入千万级测试数据 DECLARE @i int ) BEGIN INSERT INTO A_User(username,password,addtime, ...

  2. 角色 RESOURCE、CONNECT、DBA具有的权限

    角色 RESOURCE.CONNECT.DBA具有的权限 select grantee,privilege from dba_sys_privs where grantee='RESOURCE' or ...

  3. MySql优化浅析

    优化点:合理的使用索引,可以大幅度提升sql查询效率,特别查询的表的数据量大的时候,效果明显.一.引言 公司的产品XX出行上线正式运营,随着数据量的变大,司机2000+,日订单1万+,注册乘客26W+ ...

  4. appium 元素定位与操作:

    一.常用识别元素的工具   uiautomator:Android SDK自带的一个工具,在tools目录下 monitor:Android SDK自带的一个工具,在tools目录下 Appium I ...

  5. Laxcus大数据管理系统2.0(12)- 第十章 运行

    第十章 运行 本章将介绍一些Laxcus集群基本运行.使用情况,结合图片和表格表示.地点是我们的大数据实验室,使用我们的实验集群.数据来自于我们的合作伙伴,软件平台混合了Windows和Fedora  ...

  6. 某即时通信工具与RMS结合

    某客户内部使用及时通信工具与RMS相结合,如果客户使用了海外版Office 365E3可以直接在手机端使用Office app打开. 如果客户没有使用海外版Office 365E3的版本,需要结合本地 ...

  7. Windows下PATH等环境变量详解(转载)

    本文转载自http://legend2011.blog.51cto.com/3018495/553255 在学习JAVA的过程中,涉及到多个环境变量(environment variable)的概念, ...

  8. Jamie and Alarm Snooze

    Description Jamie loves sleeping. One day, he decides that he needs to wake up at exactly hh: mm. Ho ...

  9. IE中的activex控件

    1.tree控件 DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"><HTML><HE ...

  10. ACM 第十四天

    字符串: 1.KMP算法(模式串达到1e6) 模式串达到1e4直接暴力即可. 字符串哈希 字符串Hash的种类还是有很多种的,不过在信息学竞赛中只会用到一种名为“BKDR Hash”的字符串Hash算 ...