题目描述

混乱的奶牛[Don Piele, 2007]Farmer John的N(4 <= N <= 16)头奶牛中的每一头都有一个唯一的编号S_i (1 <= S_i <= 25,000). 奶牛为她们的编号感到骄傲, 所以每一头奶牛都把她的编号刻在一个金牌上, 并且把金牌挂在她们宽大的脖子上. 奶牛们对在挤奶的时候被排成一支"混乱"的队伍非常反感. 如果一个队伍里任意两头相邻的奶牛的编号相差超过K (1 <= K <= 3400), 它就被称为是混乱的. 比如说,当N = 6, K = 1时, 1, 3, 5, 2, 6, 4 就是一支"混乱"的队伍, 但是 1, 3, 6, 5, 2, 4 不是(因为5和6只相差1). 那么, 有多少种能够使奶牛排成"混乱"的队伍的方案呢?

输入

* 第 1 行: 用空格隔开的两个整数N和K

* 第 2..N+1 行: 第i+1行包含了一个用来表示第i头奶牛的编号的整数: S_i

输出

第 1 行: 只有一个整数, 表示有多少种能够使奶牛排成"混乱"的队伍的方案. 答案保证是 一个在64位范围内的整数.

样例输入

4 1
3
4
2
1

样例输出

2


题解

裸的状态压缩dp

但是注意要开long long

f[i][j]表示以i结尾j状态的方案数

#include <cstdio>
#include <cstdlib>
long long f[17][65540] , s[17];
int main()
{
long long n , p , i , j , k , l , ans = 0;
scanf("%lld%lld" , &n , &p);
for(i = 1 ; i <= n ; i ++ )
scanf("%lld" , &s[i]);
for(i = 1 ; i <= n ; i ++ )
f[i][1 << (i - 1)] = 1;
for(i = 0 ; i < (1 << n) ; i ++ )
for(j = 1 ; j <= n ; j ++ )
if(f[j][i])
for(k = 1 ; k <= n ; k ++ )
if(!((1 << (k - 1)) & i) && abs(s[j] - s[k]) > p)
f[k][(1 << (k - 1)) | i] += f[j][i];
for(i = 1 ; i <= n ; i ++ )
ans += f[i][(1 << n) - 1];
printf("%lld\n" , ans);
return 0;
}

【bzoj1231】[Usaco2008 Nov]mixup2 混乱的奶牛 状态压缩dp的更多相关文章

  1. BZOJ 1231: [Usaco2008 Nov]mixup2 混乱的奶牛 状态压缩dp

    开始读错题了,然后发现一眼切~ Code: #include <cstdio> #include <algorithm> #define ll long long #defin ...

  2. bzoj1231[Usaco2008 Nov]mixup2 混乱的奶牛(状压dp)

    1231: [Usaco2008 Nov]mixup2 混乱的奶牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1032  Solved: 588[ ...

  3. bzoj1231 [Usaco2008 Nov]mixup2 混乱的奶牛——状压DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1231 小型状压DP: f[i][j] 表示状态为 j ,最后一个奶牛是 i 的方案数: 所以 ...

  4. bzoj[Usaco2008 Nov]mixup2 混乱的奶牛 状压dp

    [Usaco2008 Nov]mixup2 混乱的奶牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1204  Solved: 698[Submit ...

  5. bzoj 1231: [Usaco2008 Nov]mixup2 混乱的奶牛 -- 状压DP

    1231: [Usaco2008 Nov]mixup2 混乱的奶牛 Time Limit: 10 Sec  Memory Limit: 162 MB Description 混乱的奶牛 [Don Pi ...

  6. 【状压dp】Bzoj1231 [Usaco2008 Nov]mixup2 混乱的奶牛

    Description 混乱的奶牛 [Don Piele, 2007] Farmer John的N(4 <= N <= 16)头奶牛中的每一头都有一个唯一的编号S_i (1 <= S ...

  7. B1231 [Usaco2008 Nov]mixup2 混乱的奶牛 状压dp

    发现是状压dp,但是还是不会...之前都白学了,本蒟蒻怎么这么菜,怎么都学不会啊... 其实我位运算基础太差了,所以状压学的不好. 题干: Description 混乱的奶牛 [Don Piele, ...

  8. bzoj1231: [Usaco2008 Nov]mixup2 混乱的奶牛

    思路:状压dp,设f[i][j]表示当前已经选出的牛的状态为i,最后一头选出的牛为j的方案数. 然后注意就是初值不能是f[0][i]=1,因为所有牛本来都可以第一个被选中,然而这样一定初值有些牛可能就 ...

  9. [Usaco2008 Nov]mixup2 混乱的奶牛 简单状压DP

    1231: [Usaco2008 Nov]mixup2 混乱的奶牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 685  Solved: 383[S ...

随机推荐

  1. Hibernate怎么用

    一.为什么用Hibernate? [核心:对象关系映射] Hibernate是对jdbc的轻量级封装,可以简化数据库连接操作, 在该框架之前,数据库的操作步骤是: 1.根据连接字串获取连接 2.执行s ...

  2. 北京Uber优步司机奖励政策(1月26日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. 1070: [SCOI2007]修车

    1070: [SCOI2007]修车 https://www.lydsy.com/JudgeOnline/problem.php?id=1070 分析: 每个第几次修车等的时间都不一样,当前第i个人修 ...

  4. P1535 游荡的奶牛

    P1535 游荡的奶牛 题目描述 Searching for the very best grass, the cows are travelling about the pasture which ...

  5. Flume直接对接SaprkStreaming的两种方式

    一.flume对接sparkStreaming的两种方式: Push推送的方式 Poll拉取的方式 第一种Push方式: 代码如下: package cn.itcast.spark.day5 impo ...

  6. linux_fdisk命令详解,关于分区的详解

    这篇文章写的十分详细,特别的好 fdisk -l 可以列出所有的分区,包括没有挂上的分区和usb设备.我一般用这个来查找需要挂载的分区的位置,比如挂上u盘. 实例解说Linux中fdisk分区使用方法 ...

  7. ORA-15032、ORA-15033—Linux环境

    SQL> alter diskgroup DATA add failgroup DATA_0000 disk '/dev/raw/raw12'; alter diskgroup DATA add ...

  8. Qt 5 最新信号和槽连接方式以及Lambda表达式

    最近学习Qt,发现新大陆,这里做下记录. 主要内容就是原始Qt4的信号槽连接方式,以及Qt5新版的连接方式,还有件事简单演示一下lambda表达式的使用方式 代码如下 /* * 作者:张建伟 * 时间 ...

  9. katalon系列七:Katalon Studio全局变量

    假如你有3个脚本都用到了用户名,如果是写死在脚本中,那么需要改变的时候,你需要修改3个地方,我们可以把用户名设为全局变量,在3个脚本中引用,需要修改时只要修改全局变量中的用户名值即可. 在Katalo ...

  10. Monkey用真机做测试的步骤

    1 必备条件 1) 手机需要先获取root权限: 2) 手机和电脑相连(电脑可以访问手机里面的文件) 2  操作步骤 1) 使用adb devices 命令查看电脑手机是否相连: 下图表示手机已连上电 ...