Description

  小A的楼房外有一大片施工工地,工地上有N栋待建的楼房。每天,这片工地上的房子拆了又建、建了又拆。他经常无聊地看着窗外发呆,数自己能够看到多少栋房子。
  为了简化问题,我们考虑这些事件发生在一个二维平面上。小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度。如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的。
  施工队的建造总共进行了M天。初始时,所有楼房都还没有开始建造,它们的高度均为0。在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高度可以比原来大---修建,也可以比原来小---拆除,甚至可以保持不变---建筑队这天什么事也没做)。请你帮小A数数每天在建筑队完工之后,他能看到多少栋楼房?

Input

  第一行两个正整数N,M
  接下来M行,每行两个正整数Xi,Yi

Output

  M行,第i行一个整数表示第i天过后小A能看到的楼房有多少栋

Sample Input

3 4
2 4
3 6
1 1000000000
1 1

Sample Output

1
1
1
2
数据约定
对于所有的数据1<=Xi<=N,1<=Yi<=10^9
N,M<=100000
————————————————————
这道题可以用线段树维护 因为涉及的只有单点修改 我们考虑一下怎么上传信息就可以了
记ans为只考虑当前区间的答案 mx为区间高度最大值
考虑合并两个区间 对于左区间那肯定是没有影响的 这个时候我们只需要考虑右区间
我们考虑右区间的左右子区间
如果左子区间的mx<=左区间的mx 那么这个子区间贡献为0递归处理右子区间就可以了 
如果左子区间的mx>左区间的mx 那么右子区间不受影响 直接加上答案就可以了 然后递归处理左子区间
这样其实蛮好写的23333
#include<cstdio>
#include<cstring>
#include<algorithm>
using std::max;
const int M=1e5+;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
struct pos{int ans;double mx;}tr[*M];
int n,m,pos;
double val;
int calc(int x,int l,int r,double val){
if(l==r) return tr[x].mx>val;
int mid=(l+r)>>;
if(tr[x<<].mx<=val) return calc(x<<^,mid+,r,val);
return tr[x].ans-tr[x<<].ans+calc(x<<,l,mid,val);
}
void modify(int x,int l,int r){
if(l==r){
tr[x].ans=;
tr[x].mx=val;
return ;
}
int mid=(l+r)>>;
if(pos<=mid) modify(x<<,l,mid);
else modify(x<<^,mid+,r);
tr[x].mx=max(tr[x<<].mx,tr[x<<^].mx);
tr[x].ans=tr[x<<].ans+calc(x<<^,mid+,r,tr[x<<].mx);
}
int main(){
int y;
n=read(); m=read();
for(int i=;i<=m;i++){
pos=read();
y=read(); val=(1.0*y)/(1.0*pos);
modify(,,n);
printf("%d\n",tr[].ans);
}
return ;
}

bzoj 2957: 楼房重建 ——线段树的更多相关文章

  1. bzoj 2957: 楼房重建 线段树

    2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 小A的楼房外有一大片施 ...

  2. bzoj 2957 楼房重建 (线段树+思路)

    链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2957 思路: 用分块可以很简单的过掉,但是这道题也可以用线段树写. 分类讨论左区间最大值对 ...

  3. BZOJ 2957 楼房重建(线段树区间合并)

    一个显而易见的结论是,这种数字的值是单调递增的.我们修改一个数只会对这个数后面的数造成影响.考虑线段树划分出来的若干线段. 这里有两种情况: 1.某个线段中的最大值小于等于修改的数,那么这个线段的贡献 ...

  4. BZOJ 2957: 楼房重建 [线段树 信息合并]

    传送门 题意:转换成斜率然后维护区间的上升序列(从区间第一个数开始的单调上升序列) 区间保存这个区间的最长序列的长度$ls$和最大值$mx$ 如何合并两个区间信息? 左区间一定选择,右区间递归寻找第一 ...

  5. BZOJ 2957楼房重建

    传送门 线段树 //Twenty #include<cstdio> #include<cstdlib> #include<iostream> #include< ...

  6. [BZOJ29957] 楼房重建 - 线段树

    2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3294  Solved: 1554[Submit][Status][Discus ...

  7. [BZOJ 2957]楼房重建(THU2013集训)(线段树维护单调栈)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2957 分析: 根据题意,就是比较斜率大小 只看一段区间的话,那么这段区间能看见的楼房数量就是这 ...

  8. BZOJ 2957 楼房重建 (线段树)

    题目链接  楼房重建 解题思路:我们可以把楼房的最高点的斜率计算出来.那么问题就转化成了实时查询x的个数,满足数列x的左边没有大于等于x的数. 我们可以用线段树维护 设t[i]为如果只看这个区间,可以 ...

  9. bzoj 2957: 楼房重建【线段树】

    总之就是找前面所有点的斜率都严格小于这个点的这样的点的个数 不管是询问还是修改都非常线段树啊,而且相当眼熟是不是和hotel有点像啊,大概就是区间内记一个len一个max,分别是当前区间答案和区间最大 ...

随机推荐

  1. aria2 on ubuntu

    http://www.5yun.org/9102.html http://jpollo.logdown.com/posts/160847-aria2c-and-yaaw aria2c --enable ...

  2. Java之comparable接口

    comparable 接口: 1. 问题:java.util.Collections 类中的方法 Collections.sort(List list) 是根据什么确定容器中对象的“大小”顺序的? 2 ...

  3. TCP系列27—窗口管理&流控—1、概述

    在前面的内容中我们依次介绍了TCP的连接建立和终止过程和TCP的各种重传方式.接着我们在这部分首先关注交互式应用TCP连接相关内容如延迟ACK.Nagle算法.Cork算法等,接着我们引入流控机制(f ...

  4. 《学习OpenCV》课后习题解答3

    题目:(P104) 创建一个大小为100*100的三通道RGB图像.将它的元素全部置0.使用指针算法以(20,5)与(40,20)为项点绘制一个绿色平面. 解答: #include "cv. ...

  5. YaoLingJump开发者日志(六)

      作为一只天才魔法少女狐,不会魔法怎么行?于是我给瑶玲增加了一个技能:魔法弹.   当然,能使用魔法的前提是得有个魔杖,像这样:   魔杖不仅能让瑶玲使用魔法,当瑶玲被攻击时还能提供2s的无敌状态: ...

  6. 【Linux】- Ubuntu守护进程supervisor

    linux的守护进程类似于windows的服务.linux通过supervisor创建守护进程. 1.安装supervisor sudo apt-get install supervisor 安装成功 ...

  7. 网上的腾讯php面试题 (有答案版本)

    一.PHP开发部分1.合并两个数组有几种方式,试比较它们的异同 答:1.array_merge()2.’+’3.array_merge_recursive array_merge 简单的合并数组arr ...

  8. placeholder 颜色

    /* placeholder颜色 */::-webkit-input-placeholder { /* WebKit browsers */color: #ccc;}:-moz-placeholder ...

  9. BZOJ 1486 最小圈(01分数规划)

    好像是很normal的01分数规划题.最小比率生成环. u(c)=sigma(E)/k.转化一下就是k*u(c)=sigma(E). sigma(E-u(c))=0. 所以答案对于这个式子是有单调性的 ...

  10. 转:Lucene之计算相似度模型VSM(Vector Space Model) : tf-idf与交叉熵关系,cos余弦相似度

    原文:http://blog.csdn.net/zhangbinfly/article/details/7734118 最近想学习下Lucene ,以前运行的Demo就感觉很神奇,什么原理呢,尤其是查 ...