LOJ #6281. 数列分块入门 5-分块(区间开方、区间求和)
题目描述
给出一个长为 nn 的数列 a_1\ldots a_na1…an,以及 nn 个操作,操作涉及区间开方,区间求和。
输入格式
第一行输入一个数字 nn。
第二行输入 nn 个数字,第 ii 个数字为 a_iai,以空格隔开。
接下来输入 nn 行询问,每行输入四个数字 \mathrm{opt}, l, r, copt,l,r,c,以空格隔开。
若 \mathrm{opt} = 0opt=0,表示将位于 [l, r][l,r] 的之间的数字都开方。对于区间中每个 a_i(l\le i\le r),\: a_i ← \left\lfloor \sqrt{a_i}\right\rfloorai(l≤i≤r),ai←⌊ai⌋
若 \mathrm{opt} = 1opt=1,表示询问位于 [l, r][l,r] 的所有数字的和。
输出格式
对于每次询问,输出一行一个数字表示答案。
样例
样例输入
4
1 2 2 3
0 1 3 1
1 1 4 4
0 1 2 2
1 1 2 4
样例输出
6
2
数据范围与提示
对于 100\%100% 的数据,1 \leq n \leq 50000, -2^{31} \leq \mathrm{others}1≤n≤50000,−231≤others、\mathrm{ans} \leq 2^{31}-1ans≤231−1。
代码一:
//#6281. 数列分块入门 5-区间开方,区间求和
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5e4+; int n,m,pos[maxn],tag[maxn];
ll a[maxn],b[maxn]; void rechange(int x)
{
int flag=;
for(int i=(x-)*m+;i<=min(x*m,n);i++){
if(a[i]>) flag=;
}
if(!flag) tag[x]=;
} void update(int l,int r)
{
if(pos[l]==pos[r]){
if(tag[pos[l]]){
for(int i=l;i<=r;i++){
b[pos[l]]-=a[i];
a[i]=floor(sqrt(a[i]));
b[pos[l]]+=a[i];
}
rechange(pos[l]);
}
}
else{
if(tag[pos[l]]){
for(int i=l;i<=pos[l]*m;i++){
b[pos[l]]-=a[i];
a[i]=floor(sqrt(a[i]));
b[pos[l]]+=a[i];
}
rechange(pos[l]);
}
for(int i=pos[l]+;i<pos[r];i++){
if(!tag[i]) continue;
for(int j=(i-)*m+;j<=i*m;j++){
b[i]-=a[j];
a[j]=floor(sqrt(a[j]));
b[i]+=a[j];
}
rechange(i);
}
if(tag[pos[r]]){
for(int i=(pos[r]-)*m+;i<=r;i++){
b[pos[r]]-=a[i];
a[i]=floor(sqrt(a[i]));
b[pos[r]]+=a[i];
}
rechange(pos[r]);
}
}
} ll query(int l,int r)
{
ll ans=;
if(pos[l]==pos[r]){
for(int i=l;i<=r;i++){
ans+=a[i];
}
}
else{
for(int i=l;i<=pos[l]*m;i++){
ans+=a[i];
}
for(int i=pos[l]+;i<pos[r];i++){
ans+=b[i];
}
for(int i=(pos[r]-)*m+;i<=r;i++){
ans+=a[i];
}
}
return ans;
} int main()
{
scanf("%d",&n);
m=sqrt(n);
for(int i=;i<=n;i++){
scanf("%lld",&a[i]);
pos[i]=(i-)/m+;
}
for(int i=;i<=n;i++){
int cnt=log(a[i])/log();
if(cnt>=) tag[pos[i]]=;
}
for(int i=;i<=m+;i++){
ll cnt=;
for(int j=(i-)*m+;j<=min(i*m,n);j++){
cnt+=a[j];
}
b[i]=cnt;
}
for(int i=;i<=n;i++){
int op,l,r,c;
scanf("%d%d%d%d",&op,&l,&r,&c);
if(op==){
update(l,r);
}
else{
printf("%lld\n",query(l,r));
}
}
} /*
10
1 3 4 2 5 7 11 3 5 1
0 1 5 1
1 1 7 2
0 3 9 1
1 4 8 7
1 1 10 6
1 3 5 3
1 5 10 7
1 6 10 6
1 2 7 4
1 3 7 5 25
8
14
3
10
9
9
8
*/
代码二:
//#6281. 数列分块入门 5-区间开方,区间求和(忘注释掉了,导致超时+wa,蠢死了)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5e4+; int n,m,pos[maxn],tag[maxn];
ll a[maxn],b[maxn]; void rechange(int x)
{
ll cnt=;int flag=;
for(int i=(x-)*m+;i<=min(x*m,n);i++){
cnt+=a[i];
if(a[i]>=) flag=;
}
b[x]=cnt;
if(!flag) tag[x]=;
} void update(int l,int r)
{
if(pos[l]==pos[r]){
if(tag[pos[l]]){
for(int i=l;i<=r;i++){
a[i]=floor(sqrt(a[i]));
}
rechange(pos[l]);
}
}
else{
if(tag[pos[l]]){
for(int i=l;i<=pos[l]*m;i++){
a[i]=floor(sqrt(a[i]));
}
rechange(pos[l]);
}
for(int i=pos[l]+;i<pos[r];i++){
if(!tag[i]) continue;
for(int j=(i-)*m+;j<=i*m;j++){
a[j]=floor(sqrt(a[j]));
}
rechange(i);
}
if(tag[pos[r]]){
for(int i=(pos[r]-)*m+;i<=r;i++){
a[i]=floor(sqrt(a[i]));
}
rechange(pos[r]);
}
}
} ll query(int l,int r)
{
ll ans=;
if(pos[l]==pos[r]){
for(int i=l;i<=r;i++){
ans+=a[i];
}
}
else{
for(int i=l;i<=pos[l]*m;i++){
ans+=a[i];
}
for(int i=pos[l]+;i<pos[r];i++){
ans+=b[i];
}
for(int i=(pos[r]-)*m+;i<=r;i++){
ans+=a[i];
}
}
//cout<<"ans: "<<ans<<endl;
return ans;
} int main()
{
scanf("%d",&n);
m=sqrt(n);
for(int i=;i<=n;i++){
scanf("%lld",&a[i]);
pos[i]=(i-)/m+;
}
for(int i=;i<=n;i++){
int cnt=log(a[i])/log();
if(cnt>=) tag[pos[i]]=;
}
for(int i=;i<=m+;i++){
ll cnt=;
for(int j=(i-)*m+;j<=min(i*m,n);j++){
cnt+=a[j];
}
b[i]=cnt;
}
for(int i=;i<=n;i++){
int op,l,r,c;
scanf("%d%d%d%d",&op,&l,&r,&c);
if(op==){
update(l,r);
// for(int i=1;i<=n;i++)
// cout<<a[i]<<" ";
// cout<<endl;
}
else{
printf("%lld\n",query(l,r));
}
}
} /*
10
1 3 4 2 5 7 11 3 5 1
0 1 5 1
1 1 7 2
0 3 9 1
1 4 8 7
1 1 10 6
1 3 5 3
1 5 10 7
1 6 10 6
1 2 7 4
1 3 7 5 25
8
14
3
10
9
9
8
*/
LOJ #6281. 数列分块入门 5-分块(区间开方、区间求和)的更多相关文章
- 线段树 区间开方区间求和 & 区间赋值、加、查询
本文同步发表于 https://www.zybuluo.com/Gary-Ying/note/1288518 线段树的小应用 -- 维护区间开方区间求和 题目传送门 约定: sum(i,j) 表示区间 ...
- LOJ 6281 数列分块入门 5
简化版题意 给出一个长为n的数列,以及n个操作,操作涉及区间开方(每个数都向下取整),区间求和,保证所有数都为有符号32位正整数. N<=50000 Solution 首先我们先思考: 一个有符 ...
- LibreOJ 6281 数列分块入门 5(分块区间开方区间求和)
题解:区间开方emmm,这马上让我想起了当时写线段树的时候,很显然,对于一个在2^31次方以内的数,开方7-8次就差不多变成一了,所以我们对于每次开方,如果块中的所有数都为一了,那么开方也没有必要了. ...
- LOJ.6281.数列分块入门5(分块 区间开方)
题目链接 int内的数(也不非得是int)最多开方4.5次就变成1了,所以还不是1就暴力,是1就直接跳过. #include <cmath> #include <cstdio> ...
- [Libre 6281] 数列分块入门 5 (分块)
水一道入门分块qwq 题面:传送门 开方基本暴力.. 如果某一个区间全部都开成1或0就打上标记全部跳过就行了 因为一个数开上个四五六次就是1了所以复杂度能过233~ code: //By Menteu ...
- LibreOJ 6280 数列分块入门 4(分块区间加区间求和)
题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...
- LOJ.6284.数列分块入门8(分块)
题目链接 \(Description\) 给出一个长为n的数列,以及n个操作,操作涉及区间询问等于一个数c的元素,并将这个区间的所有元素改为c. \(Solution\) 模拟一些数据可以发现,询问后 ...
- LibreOJ 6277 数列分块入门 1(分块)
题解:感谢hzwer学长和loj让本蒟蒻能够找到如此合适的入门题做. 这是一道非常标准的分块模板题,本来用打标记的线段树不知道要写多少行,但是分块只有这么几行,极其高妙. 代码如下: #include ...
- LibreOJ 6278 数列分块入门 2(分块)
题解:非常高妙的分块,每个块对应一个桶,桶内元素全部sort过,加值时,对于零散块O(sqrt(n))暴力修改,然后暴力重构桶.对于大块直接整块加.查询时对于非完整块O(sqrt(n))暴力遍历.对 ...
随机推荐
- emqtt新版升级一些事项和操作
注解 Erlang/OTP R19依赖lksctp-tools库 yum install lksctp-tools 控制台地址: http://127.0.0.1:18083,默认用户: admin, ...
- ZooKeeper配额指南(十)
配额 ZK有命名空间和字节配额.你可以使用ZooKeeperMain类来设置配额.ZK打印警告信息如果用户超过分配给他们的配额.这些信息被打印到ZK的日志中. $java -cp zookeeper. ...
- 动态规划:区间DP与环形DP
区间型动态规划的典型例题是石子归并,同时使用记忆化搜索实现区间动归是一种比较容易实现的方式,避免了循环数组实现的时候一些边界的判断 n堆石子排列成一条线,我们可以将相邻的两堆石子进行合并,合并之后需要 ...
- Morley's Theorem (计算几何基础+向量点积、叉积、旋转、夹角等+两直线的交点)
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- 74cms 注入exp
遇到就瞎写了一个: #!/usr/bin/env python #encoding:utf-8 #by i3ekr import requests,optparse,re parse = optpar ...
- DIV+CSS综合实例【传智PHP首页】
1.首页结构 2.准备工作 所有素材放到与当前网页同级的目录下: 网页背景色.背景图: 主页宽度:1000px: 创建CSS文件,将CSS文件引入到当前的HTML文件中. 3.实现 效果图: HTML ...
- python基础===getattr()函数使用方法
getattr(object, name[,default]) 获取对象object的属性或者方法,如果存在打印出来,如果不存在,打印出默认值,默认值可选.需要注意的是,如果是返回的对象的方法,返回的 ...
- python爬虫面试总结
1.爬虫有哪些模块? 答: URL管理模块:维护已经爬取的URL集合和未爬取的URL集合,并提供获取新URL链接的接口 HTML下载模块:从URL管理器中获取未爬取的URL链接并下载HTML网页 HT ...
- 各种好用的代码生成器(C#)
各种好用的代码生成器(C#) 1:CodeSmith 一款人气很旺国外的基于模板的dotnet代码生成器 官方网站:http://www.codesmithtools.com 官方论坛:http:// ...
- ubuntu下ssh服务相关操作
1.安装ssh服务:apt-get install openssh-server 2.检测ssh开启状态:ps -e | grep ssh 3.启动ssh:/etc/init.d/ssh start ...