POJ 1423 Greatest Common Increasing Subsequence【裸LCIS】
链接:
Greatest Common Increasing Subsequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2757 Accepted Submission(s): 855
1 5
1 4 2 5 -12
4
-12 1 2 4
2
算法:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
using namespace std; const int maxn = 500+50;
int dp[maxn][maxn];
int a[maxn],b[maxn];
int m,n; /****
求序列 A 长度为 N 和序列 B 长度为 M 的 LCS
序列下标从 1 开始
*/
int LCS()
{
for(int i = 1; i <= n; i++)
{
int tmp = 0; //记录在i确定,且a[i]>b[j]的时候dp[i,j]的最大值
for(int j = 1; j <= m; j++)
{
dp[i][j] = dp[i-1][j];
if(a[i] > b[j])
{
tmp = dp[i-1][j];
}
else if(a[i] == b[j])
dp[i][j] = tmp+1;
}
}
//for(int i = 1; i <= m; i++) printf("%d ", dp[n][i]); printf("\n"); int ans = 0;
for(int i = 1; i <= m; i++)
ans = max(ans, dp[n][i]);
return ans; } int main()
{
int T;
scanf("%d", &T);
while(T--)
{
memset(dp,0,sizeof(dp)); scanf("%d", &n);
for(int i = 1; i <= n; i++)
scanf("%d", &a[i]);
scanf("%d", &m);
for(int j = 1; j <= m; j++)
scanf("%d", &b[j]); printf("%d\n",LCS());
if(T != 0) printf("\n");
}
}
内存优化:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
using namespace std; const int maxn = 500+50;
int dp[maxn];
int a[maxn],b[maxn];
int m,n; /****
求序列 A 长度为 N 和序列 B 长度为 M 的 LCS
序列下标从 1 开始
*/
int LCS()
{
for(int i = 1; i <= n; i++)
{
int tmp = 0;
for(int j = 1; j <= m; j++)
{
if(a[i] > b[j] && dp[j] > tmp)
{
tmp = dp[j];
}
else if(a[i] == b[j])
dp[j] = tmp+1;
}
} int ans = 0;
for(int i = 1; i <= m; i++)
ans = max(ans, dp[i]);
return ans;
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
memset(dp,0,sizeof(dp)); scanf("%d", &n);
for(int i = 1; i <= n; i++)
scanf("%d", &a[i]);
scanf("%d", &m);
for(int j = 1; j <= m; j++)
scanf("%d", &b[j]); printf("%d\n",LCS());
if(T != 0) printf("\n");
}
}
POJ 1423 Greatest Common Increasing Subsequence【裸LCIS】的更多相关文章
- HDU 1423 Greatest Common Increasing Subsequence(LCIS)
Greatest Common Increasing Subsequenc Problem Description This is a problem from ZOJ 2432.To make it ...
- 1423 Greatest Common Increasing Subsequence (LCIS)
讲解摘自百度; 最长公共上升子序列(LCIS)的O(n^2)算法? 预备知识:动态规划的基本思想,LCS,LIS.? 问题:字符串a,字符串b,求a和b的LCIS(最长公共上升子序列).? 首先我们可 ...
- HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)
HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...
- HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】
HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...
- HDU 1423 Greatest Common Increasing Subsequence LCIS
题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- POJ 2127 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://poj.org/problem?id=2127 Description You are given two sequences of integer numbers. Writ ...
- HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...
- POJ 2127 Greatest Common Increasing Subsequence
You are given two sequences of integer numbers. Write a program to determine their common increasing ...
- HDUOJ ---1423 Greatest Common Increasing Subsequence(LCS)
Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536 ...
随机推荐
- Xgboost 模型保存和载入()
https://blog.csdn.net/u012884015/article/details/78653178 xgb_model.get_booster().save_model('xgb.mo ...
- C#面试基础问题0
传入某个属性的set方法的隐含参数的名称是什么?value,它的类型和属性所声名的类型相同. 如何在C#中实现继承?在类名后加上一个冒号,再加上基类的名称. C#支持多重继承么?不支持.可以用接口来实 ...
- jquery cookie操作方法
1. 设置cookie的值,把name变量的值设为value $.cookie(’name’, ‘value’); 2.新建一个cookie 包括有效期 路径 域名等 $.cookie(’n ...
- Mysql的replace into语句
Mysql语句 replace into 跟 insert 功能类似,不同点在于:replace into 首先尝试插入数据到表中, 1. 如果发现表中已经有此行数据(根据主键或者唯一索引判断)则先删 ...
- MongoDB GridFS最佳应用概述
<MongoDB GridFS最佳应用概述> 作者:chszs,转载需注明.博客主页:http://blog.csdn.net/chszs GridFS是MongoDB数据库之上的一个简单 ...
- Atitit.导出excel功能的设计 与解决方案
Atitit.导出excel功能的设计 与解决方案 1.1. 项目起源于背景1 1.2. Js jquery方案(推荐)jquery.table2excel1 1.3. 服务器方案2 1.4. 详细 ...
- Vivado使用技巧:封装自己设计的IP核
概述 Vivado在设计时可以感觉到一种趋势,它鼓励用IP核的方式进行设计.“IP Integrator”提供了原理图设计的方式,只需要在其中调用设计好的IP核连线.IP核一部分来自于Xilinx ...
- [elk]logstash grok原理
logstash语法 http://www.ttlsa.com/elk/elk-logstash-configuration-syntax/ https://www.elastic.co/guide/ ...
- 学习笔记:iOS 视图控制器(UIViewController)剖析
转自:http://www.cnblogs.com/martin1009/archive/2012/06/01/2531136.html 视图控制器在iOS编程中占据非常重要的位置,因此我们一定要掌握 ...
- Spring事务的隔离级别
1. ISOLATION_DEFAULT: 这是一个 PlatfromTransactionManager 默认的隔离级别,使用数据库默认的事务隔离级别. 另外四个与 JDBC的隔离级别相对应: ...