到目前为止,我们了解了三种Pandas数据结构以及如何创建它们。接下来将主要关注数据帧(DataFrame)对象,因为它在实时数据处理中非常重要,并且还讨论其他数据结构。

系列基本功能

编号 属性或方法 描述
1 axes 返回行轴标签列表。
2 dtype 返回对象的数据类型(dtype)。
3 empty 如果系列为空,则返回True
4 ndim 返回底层数据的维数,默认定义:1
5 size 返回基础数据中的元素数。
6 values 将系列作为ndarray返回。
7 head() 返回前n行。
8 tail() 返回最后n行。

现在创建一个系列并演示如何使用上面所有列出的属性操作。

示例

import pandas as pd
import numpy as np #Create a series with 100 random numbers
s = pd.Series(np.random.randn(4))
print s
Python

执行上面示例代码,得到以下输出结果 -

0   0.967853
1 -0.148368
2 -1.395906
3 -1.758394
dtype: float64
Python

axes示例

返回系列的标签列表。参考以下示例代码 -

import pandas as pd
import numpy as np #Create a series with 100 random numbers
s = pd.Series(np.random.randn(4))
print ("The axes are:")
print s.axes
Python

执行上面示例代码,得到以下输出结果 -

The axes are:
[RangeIndex(start=0, stop=4, step=1)]
Python

上述结果是从05的值列表的紧凑格式,即:[0,1,2,3,4]

empty示例

返回布尔值,表示对象是否为空。返回True则表示对象为空。

import pandas as pd
import numpy as np #Create a series with 100 random numbers
s = pd.Series(np.random.randn(4))
print ("Is the Object empty?")
print s.empty
Python

执行上面示例代码,得到以下输出结果 -

Is the Object empty?
False
Python

ndim示例

返回对象的维数。根据定义,一个系列是一个1D数据结构,参考以下示例代码 -

import pandas as pd
import numpy as np #Create a series with 4 random numbers
s = pd.Series(np.random.randn(4))
print s print ("The dimensions of the object:")
print s.ndim
Python

执行上面示例代码,得到以下结果 -

0   0.175898
1 0.166197
2 -0.609712
3 -1.377000
dtype: float64 The dimensions of the object:
1
Shell

size示例

返回系列的大小(长度)。参考以下示例代码 -

import pandas as pd
import numpy as np #Create a series with 4 random numbers
s = pd.Series(np.random.randn(2))
print s
print ("The size of the object:")
print s.size
Python

执行上面示例代码,得到以下结果 -

0   3.078058
1 -1.207803
dtype: float64 The size of the object:
2
Shell

values示例

以数组形式返回系列中的实际数据值。

import pandas as pd
import numpy as np #Create a series with 4 random numbers
s = pd.Series(np.random.randn(4))
print s print ("The actual data series is:")
print s.values
Python

执行上面示例代码,得到以下结果 -

0   1.787373
1 -0.605159
2 0.180477
3 -0.140922
dtype: float64 The actual data series is:
[ 1.78737302 -0.60515881 0.18047664 -0.1409218 ]
Shell

head()和tail()方法示例

要查看Series或DataFrame对象的小样本,请使用head()tail()方法。

head()返回前n行(观察索引值)。要显示的元素的默认数量为5,但可以传递自定义这个数字值。

import pandas as pd
import numpy as np #Create a series with 4 random numbers
s = pd.Series(np.random.randn(4))
print ("The original series is:")
print s print ("The first two rows of the data series:")
print s.head(2)
Python

执行上面示例代码,得到以下结果 -

The original series is:
0 0.720876
1 -0.765898
2 0.479221
3 -0.139547
dtype: float64 The first two rows of the data series:
0 0.720876
1 -0.765898
dtype: float64
Shell

tail()返回最后n行(观察索引值)。 要显示的元素的默认数量为5,但可以传递自定义数字值。参考以下示例代码 -

import pandas as pd
import numpy as np #Create a series with 4 random numbers
s = pd.Series(np.random.randn(4))
print ("The original series is:")
print s print ("The last two rows of the data series:")
print s.tail(2)
Python

执行上面示例代码,得到以下结果 -

The original series is:
0 -0.655091
1 -0.881407
2 -0.608592
3 -2.341413
dtype: float64 The last two rows of the data series:
2 -0.608592
3 -2.341413
dtype: float64
Shell

DataFrame基本功能

下面来看看数据帧(DataFrame)的基本功能有哪些?下表列出了DataFrame基本功能的重要属性或方法。

编号 属性或方法 描述
1 T 转置行和列。
2 axes 返回一个列,行轴标签和列轴标签作为唯一的成员。
3 dtypes 返回此对象中的数据类型(dtypes)。
4 empty 如果NDFrame完全为空[无项目],则返回为True; 如果任何轴的长度为0
5 ndim 轴/数组维度大小。
6 shape 返回表示DataFrame的维度的元组。
7 size NDFrame中的元素数。
8 values NDFrame的Numpy表示。
9 head() 返回开头前n行。
10 tail() 返回最后n行。

下面来看看如何创建一个DataFrame并使用上述属性和方法。

示例

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])} #Create a DataFrame
df = pd.DataFrame(d)
print ("Our data series is:")
print df
Python

执行上面示例代码,得到以下结果 -

Our data series is:
Age Name Rating
0 25 Tom 4.23
1 26 James 3.24
2 25 Ricky 3.98
3 23 Vin 2.56
4 30 Steve 3.20
5 29 Minsu 4.60
6 23 Jack 3.80
Shell

T(转置)示例

返回DataFrame的转置。行和列将交换。参考以下示例代码 -

import pandas as pd
import numpy as np # Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])} # Create a DataFrame
df = pd.DataFrame(d)
print ("The transpose of the data series is:")
print df.T
Python

执行上面示例代码,得到以下结果 -

The transpose of the data series is:
0 1 2 3 4 5 6
Age 25 26 25 23 30 29 23
Name Tom James Ricky Vin Steve Minsu Jack
Rating 4.23 3.24 3.98 2.56 3.2 4.6 3.8
Shell

axes示例

返回行轴标签和列轴标签列表。参考以下示例代码 -

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])} #Create a DataFrame
df = pd.DataFrame(d)
print ("Row axis labels and column axis labels are:")
print df.axes
Python

执行上面示例代码,得到以下结果 -

Row axis labels and column axis labels are:

[RangeIndex(start=0, stop=7, step=1), Index([u'Age', u'Name', u'Rating'],
dtype='object')]
Shell

dtypes示例

返回每列的数据类型。参考以下示例代码 -

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])} #Create a DataFrame
df = pd.DataFrame(d)
print ("The data types of each column are:")
print df.dtypes
Python

执行上面示例代码,得到以下结果 -

The data types of each column are:
Age int64
Name object
Rating float64
dtype: object
Shell

empty示例

返回布尔值,表示对象是否为空; 返回True表示对象为空。

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])} #Create a DataFrame
df = pd.DataFrame(d)
print ("Is the object empty?")
print df.empty
Python

执行上面示例代码,得到以下结果 -

Is the object empty?
False
Shell

ndim示例

返回对象的维数。根据定义,DataFrame是一个2D对象。参考以下示例代码 -

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])} #Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print df
print ("The dimension of the object is:")
print df.ndim
Python

执行上面示例代码,得到以下结果 -

Our object is:
Age Name Rating
0 25 Tom 4.23
1 26 James 3.24
2 25 Ricky 3.98
3 23 Vin 2.56
4 30 Steve 3.20
5 29 Minsu 4.60
6 23 Jack 3.80 The dimension of the object is:
2
Shell

shape示例

返回表示DataFrame的维度的元组。 元组(a,b),其中a表示行数,b表示列数。

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])} #Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print df
print ("The shape of the object is:")
print df.shape
Python

执行上面示例代码,得到以下结果 -

Our object is:
Age Name Rating
0 25 Tom 4.23
1 26 James 3.24
2 25 Ricky 3.98
3 23 Vin 2.56
4 30 Steve 3.20
5 29 Minsu 4.60
6 23 Jack 3.80 The shape of the object is:
(7, 3)
Shell

size示例

返回DataFrame中的元素数。参考以下示例代码 -

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])} #Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print df
print ("The total number of elements in our object is:")
print df.size
Python

执行上面示例代码,得到以下结果 -

Our object is:
Age Name Rating
0 25 Tom 4.23
1 26 James 3.24
2 25 Ricky 3.98
3 23 Vin 2.56
4 30 Steve 3.20
5 29 Minsu 4.60
6 23 Jack 3.80 The total number of elements in our object is:
21
Shell

values示例

DataFrame中的实际数据作为NDarray返回。参考以下示例代码 -

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])} #Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print df
print ("The actual data in our data frame is:")
print df.values
Python

执行上面示例代码,得到以下结果 -

Our object is:
Age Name Rating
0 25 Tom 4.23
1 26 James 3.24
2 25 Ricky 3.98
3 23 Vin 2.56
4 30 Steve 3.20
5 29 Minsu 4.60
6 23 Jack 3.80
The actual data in our data frame is:
[[25 'Tom' 4.23]
[26 'James' 3.24]
[25 'Ricky' 3.98]
[23 'Vin' 2.56]
[30 'Steve' 3.2]
[29 'Minsu' 4.6]
[23 'Jack' 3.8]]
Shell

head()和tail()示例

要查看DataFrame对象的小样本,可使用head()tail()方法。head()返回前n行(观察索引值)。显示元素的默认数量为5,但可以传递自定义数字值。参考以下示例代码 -

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])} #Create a DataFrame
df = pd.DataFrame(d)
print ("Our data frame is:")
print df
print ("The first two rows of the data frame is:")
print df.head(2)
Python

执行上面示例代码,得到以下结果 -

Our data frame is:
Age Name Rating
0 25 Tom 4.23
1 26 James 3.24
2 25 Ricky 3.98
3 23 Vin 2.56
4 30 Steve 3.20
5 29 Minsu 4.60
6 23 Jack 3.80 The first two rows of the data frame is:
Age Name Rating
0 25 Tom 4.23
1 26 James 3.24
Shell

tail()返回最后n行(观察索引值)。显示元素的默认数量为5,但可以传递自定义数字值。

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])} #Create a DataFrame
df = pd.DataFrame(d)
print ("Our data frame is:")
print df
print ("The last two rows of the data frame is:")
print df.tail(2)
Python

执行上面示例代码,得到以下结果 -

Our data frame is:
Age Name Rating
0 25 Tom 4.23
1 26 James 3.24
2 25 Ricky 3.98
3 23 Vin 2.56
4 30 Steve 3.20
5 29 Minsu 4.60
6 23 Jack 3.80 The last two rows of the data frame is:
Age Name Rating
5 29 Minsu 4.6
6 23 Jack 3.8
Shell
 

Pandas基本功能的更多相关文章

  1. pandas小记:pandas高级功能

    http://blog.csdn.net/pipisorry/article/details/53486777 pandas高级功能:面板数据.字符串方法.分类.可视化. 面板数据 {pandas数据 ...

  2. Pandas基本功能详解

    Pandas基本功能详解 Pandas  Pandas基本功能详解 |轻松玩转Pandas(2) 参考:Pandas基本功能详解 |轻松玩转Pandas(2)

  3. Pandas基本功能之reindex重新索引

    重新索引 reindex重置索引,如果索引值不存在,就引入缺失值 参数介绍 参数 说明 index 用作索引的新序列 method 插值 fill_vlaue 引入缺失值时的替代NaN limit 最 ...

  4. python使用easyinstall安装xlrd、xlwt、pandas等功能模块的方法

    在日常工作中,使用Python时经常要引入一些集成好的第三方功能模块,如读写excel的xlrd和xlwt模块,以及数据分析常用的pandas模块等. 原生的python并不含这些模块,在使用这些功能 ...

  5. Pandas日期功能

    日期功能扩展了时间序列,在财务数据分析中起主要作用.在处理日期数据的同时,我们经常会遇到以下情况 - 生成日期序列 将日期序列转换为不同的频率 创建一个日期范围 通过指定周期和频率,使用date.ra ...

  6. Pandas常用功能

    在使用Pandas之前,需要导入pandas库 import pandas  as pd #pd作为pandas的别名 常用功能如下: 代码 功能1 .DataFrame()   创建一个DataFr ...

  7. Pandas常用功能总结

    1.读取.csv文件 df2 = pd.read_csv('beijingsale.csv', encoding='gb2312',index_col='id',sep='\t',header=Non ...

  8. Pandas基本功能之层次化索引及层次化汇总

    层次化索引 层次化也就是在一个轴上拥有多个索引级别 Series的层次化索引 data=Series(np.random.randn(10),index=[ ['a','a','a','b','b', ...

  9. Pandas基本功能之算术运算、排序和排名

    算术运算和数据对齐 Series和DataFrame中行运算和列运算有种特征叫做广播 在将对象相加时,如果存在不同的索引对,则结果的索引就是该索引对的并集.自动的数据对齐操作在不重叠的索引处引入了NA ...

随机推荐

  1. 滚动监听: bootstrap 的scrollspy

    滚动监听 bootstrap 的scrollspy,需要借助.nav样式,活动的部分是加 .active类.本身导航没有position:fixed,需要自己加入 滚动监听.只有滚动和监听,只有默认锚 ...

  2. coreldraw X6 cdrX6下载激活工具

    coreldraw X6 cdrX6下载激活工具 百度网盘 CDRX6下载 激活教程什么的请参考 低吟浅唱 博客

  3. Spoken English Practice(You know we can't afford that. How do other people do it? Other people make more twenty-four thousand a year. )

    绿色:连读:                  红色:略读:               蓝色:浊化:               橙色:弱读     下划线_为浊化 口语蜕变(2017/7/9) 英 ...

  4. iOS论App推送方案

    1.APNS介绍(原生推送实现原理) 在iOS平台上,大部分应用是不允许在后台运行并连接网络的.在应用没有被运行的时候,只能通过 Apple Push Notification Service (AP ...

  5. Python SQLAlchemy基本操作和常用技巧(包含大量实例,非常好)

    https://www.jb51.net/article/49789.htm 首先说下,由于最新的 0.8 版还是开发版本,因此我使用的是 0.79 版,API 也许会有些不同.因为我是搭配 MySQ ...

  6. Spring Data 关于Repository的介绍(四)

    Repository类的定义: public interface Repository<T, ID extends Serializable> { } 1)Repository是一个空接口 ...

  7. Hibernate 的查询

    1. Hibernate 框架的查询方式 唯一标识OID的检索方式: session.get(对象.class, OID) 对象导航的方式; HQL 检索方式; QBC 检索方式; SQL 检索方式 ...

  8. 使用Redis的五个注意事项(命名)

    原文:使用Redis的五个注意事项 下面内容来源于Quora上的一个提问,问题是使用Redis需要避免的五个问题.而回答中超出了五个问题的范畴,描述了五个使用Redis的注意事项.如果你在使用或者考虑 ...

  9. DjangoDRF序列化组件使用

    创建一个Django项目,名字:untitled1 创建三张表 from django.db import models class Publish(models.Model): nid = mode ...

  10. mysql乱码修改character_set_server

    [mac] 1.使用任何一个客房端或者命令行查询一下编码,俺用的是MySQLWorkbench SHOW VARIABLES LIKE 'character_set_%'; 2.发现编码是charac ...