传送门

Description

给定一个\(n\)个点\(m\)条边的无向无环图,选择尽量少的节点,使得所有边都至少有一个顶点被选择。在这个基础上,要求有两个顶点被选择的边数尽可能大

Input

多组数据。第一行是数据组数\(T\)。

以下\(T\)组,每组包括:

第一行两个整数\(n\),\(m\)。

下面\(m\)行,每行两个整数\(u\),\(v\)。代表一条边。

Output

对于每组数据输出一行,包括三个用空格隔开的整数,分别是:

最小的灯的个数,两个顶点都被选择的边数,一个顶点被选择的边数

Sample Input

2
4 3
0 1
1 2
2 3
5 4
0 1
0 2
0 3
0 4

Sample Output

2 1 2
1 0 4

Hint

\(For~All:\)

\(m~<~n~\leq~1000\)

Solution

考虑无向无环图本质上是个森林,各个树互不影响。于是下面只研究单棵树的情况。

考虑这个题的优化目标有两个,分别是要求点数尽可能少,还有两个顶点被选择的边尽可能多。为了统一取max和min,我们将目标二改为有且仅有一个顶点被选择的边尽可能少。

对于同时最小化两个目标,而且在第一个目标最小的时候需要最小化第二个目标的的时候,可以设第一个目标的值是\(x_1\),第二个目标的值是\(x_2\)。目标为最小化\(ans=x_1~\times~K+x_2\),其中满足\(K~>~max_{x_2}\)。

于是对于本题就可以套这种方法。由于\(n~\leq~1000\),所以不妨设\(K=2000\)。设\(f_{i,0/1}\)为以\(i\)为根的子树合法,且点\(i\)不选/选的答案。

方程显然:

\[f_{i,0}~=~\sum\{f_{to,1}+1\}
\]

\[f_{i,1}~=~\sum~min~\{f_{to,1}~,~f_{to,0}+1\}+k
\]

于是就没了

Code

#include<cstdio>
#include<cstring>
#define rg register
#define ci const int
#define cl const long long int typedef long long int ll; namespace IO {
char buf[90];
} template<typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>'9'||ch<'0') lst=ch,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst=='-') x=-x;
} template<typename T>
inline void write(T x,const char aft,const bool pt) {
if(x<0) x=-x,putchar('-');
int top=0;
do {
IO::buf[++top]=x%10+'0';
x/=10;
} while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template<typename T>
inline T mmax(const T a,const T b) {return a > b ? a : b;}
template<typename T>
inline T mmin(const T a,const T b) {return a < b ? a : b;}
template<typename T>
inline T mabs(const T a) {return a < 0 ? -a : a;} template<typename T>
inline void mswap(T &a,T &b) {
T temp=a;a=b;b=temp;
} const int st = 2000;
const int maxn = 1010;
const int maxm = 2010; struct Edge {
int to,nxt;
};
Edge edge[maxm];int hd[maxn],ecnt;
inline void cont(ci from,ci to) {
Edge &e=edge[++ecnt];
e.to=to;e.nxt=hd[from];hd[from]=ecnt;
} int n,m;
int frog[maxn][2];
bool vis[maxn]; void clear();
void reading();
void dfs(ci,ci); int main() {
rg int t=0;qr(t);
while(t--) {
clear();
qr(n);qr(m);
rg int _ans=0;
reading();
for(rg int i=1;i<=n;++i) if(!vis[i]) {
dfs(i,0);_ans+=mmin(frog[i][0],frog[i][1]);
}
rg int tk=_ans%st;
write(_ans/st,' ',true);write(m-tk,' ',true);write(tk,'\n',true);
}
return 0;
} void clear() {
n=m=ecnt=0;
memset(hd,0,sizeof hd);
memset(vis,0,sizeof vis);
memset(edge,0,sizeof edge);
memset(frog,0,sizeof frog);
} void reading() {
rg int a,b;
for(rg int i=1;i<=m;++i) {
a=b=0;qr(a);qr(b);++a,++b;
cont(a,b);cont(b,a);
}
} void dfs(ci u,ci fa) {
vis[u]=true;
frog[u][1]=st;
for(rg int i=hd[u];i;i=edge[i].nxt) {
int &to=edge[i].to;
if(to == fa) continue;
dfs(to,u);
frog[u][0]+=frog[to][1]+1;
frog[u][1]+=mmin(frog[to][1],frog[to][0]+1);
}
}

Summary

对于同时最小化两个目标,而且在第一个目标最小的时候需要最小化第二个目标的的时候,可以设第一个目标的值是\(x_1\),第二个目标的值是\(x_2\)。目标为最小化\(ans=x_1~\times~K+x_2\),其中满足\(K~>~max_{x_2}\)。

【树形DP】【UVA10859】 Placing Lampposts的更多相关文章

  1. UVA10859 Placing Lampposts

    我是题面 这道题使我知道了一种很神奇的方法,一定要认真看哦 如果没有被两盏灯同时照亮的边数应尽量大这个限制的话,这就是一道很经典的树形DP题--没有上司的舞会 很可惜,这个限制就在那里,它使得我辛苦写 ...

  2. uva10859 Placing Lampposts (树形dp+求两者最小值方法)

    题目链接:点击打开链接 题意:给你一个n个点m条边的无向无环图,在尽量少的节点上放灯,使得所有边都被照亮,每盏灯将照亮以它为一个端点的所有边.在灯的总数最小的前提下,被两盏灯同时照亮的边数应尽量大. ...

  3. 再谈树形dp

    上次说了说树形dp的入门 那么这次该来一点有难度的题目了: UVA10859 Placing Lampposts 给定一个n个点m条边的无向无环图,在尽量少的节点上放灯,使得所有边都与灯相邻(被灯照亮 ...

  4. UVA 10859 - Placing Lampposts 树形DP、取双优值

                              Placing Lampposts As a part of the mission ‘Beautification of Dhaka City’, ...

  5. UVa 10859 - Placing Lampposts 树形DP 难度: 2

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  6. UVA 10859 Placing Lamppost 树形DP+二目标最优解的求解方案

    题意:给定一个无向,无环,无多重边,要求找出最少的若干点,使得,每条边之中至少有一个点上有街灯.在满足上述条件的时候将还需要满足让两个点被选择的边的数量尽量多. 题解: 对于如何求解最小的节点数目这点 ...

  7. 「算法笔记」树形 DP

    一.树形 DP 基础 又是一篇鸽了好久的文章--以下面这道题为例,介绍一下树形 DP 的一般过程. POJ 2342 Anniversary party 题目大意:有一家公司要举行一个聚会,一共有 \ ...

  8. UVA - 10859 Placing Lampposts 放置街灯

    Placing Lampposts 传送门:https://vjudge.net/problem/UVA-10859 题目大意:给你一片森林,要求你在一些节点上放上灯,一个点放灯能照亮与之相连的所有的 ...

  9. 树形DP入门学习

    这里是学习韦神的6道入门树形dp进行入门,本来应放在day12&&13里,但感觉这个应该单独放出来好点. 这里大部分题目都是参考的韦神的思想. A - Anniversary part ...

  10. 10_放置街灯(Placing Lampposts,UVa 10859)

    问题来源:刘汝佳<算法竞赛入门经典--训练指南> P70 例题30: 问题描述:有给你一个n个点m条边(m<n<=1000)的无向无环图,在尽量少的节点上放灯,使得所有边都被照 ...

随机推荐

  1. Jmeter断言、参数化及集合点

    JMeter---QPS(Query Per Second) QPS为每秒查询率.是一台查询服务器每秒能够处理的查询次数,在因特网上,作为域名系统服务器的性能经常用每秒查询率来衡量.步骤:1.添加线程 ...

  2. 【icon】 图标组件说明

    小程序默认了几种类型图标,其组件原型如下: <icon type="[success | success_no_circle | info | warn | waiting | can ...

  3. Aizu - 2249

    注意先保证距离最短,再来判断价格 邻接矩阵回朝内存  ,要用邻接表的 #include<bits/stdc++.h> using namespace std; #define inf 0x ...

  4. OpenMPI源码剖析2:ompi_mpi_errors_are_fatal_comm_handler函数

    上一篇文章说道,初始化失败会有一个函数调用: ompi_mpi_errors_are_fatal_comm_handler(NULL, NULL, message); 所以这里简单地进入了 ompi_ ...

  5. UVa 10082 - WERTYU 解题报告 - C语言

    1.题目大意: 输入一个错位的字符串(字母全为大写),输出原本想打出的句子. 2.思路: 如果将每个输入字符所对应的应输出字符一一使用if或者switch,则过于繁琐.因此考虑使用常量数组实现. 3. ...

  6. 系统滴答定时器(SysTick)中断配置

    系统滴答定时器(SysTick)中断配置 在STM32标准库中是通过SysTick_Config()函数配置时钟中断的,然后SysTick_Handler()函数自动定时触发其中的函数. if(Sys ...

  7. 安装HIVE

    参考:https://cwiki.apache.org/confluence/display/Hive/GettingStarted 1.下载hive安装包     到apache官网或者其它地方下载 ...

  8. Fluent Python: @property

    Fluent Python 9.6节讲到hashable Class, 为了使Vector2d类可散列,有以下条件: (1)实现__hash__方法 (2)实现__eq__方法 (3)让Vector2 ...

  9. 第四课——MFC应用程序框架

    一.MFC应用程序类型 上篇文章的彩蛋:可通过使用MFC应用程序向导(MFC AppWizard)的功能来创建所需要的应用程序,这意味着不需要输入任何代码.MFC除了应用程序向导,还对应用程序项目有着 ...

  10. 从电梯问题,看c和c++之间的区别(有点懂了)错觉错觉

    磕磕碰碰的也相继用c和c++构造了不少的电梯了.虽然对自我的表现不满意,但是总体来说还是有一定的收获的,对于c和c++之间的区别感觉也摸到了一点点门道了... 用c语言构造电梯的步骤: 第一步: 分析 ...