Python图像处理库(2)
1.4 SciPy
SciPy
(http://scipy.org/) 是建立在 NumPy
基础上,用于数值运算的开源工具包。SciPy
提供很多高效的操作,可以实现数值积分、优化、统计、信号处理,以及对我们来说最重要的图像处理功能。接下来,本节会介绍 SciPy
中大量有用的模块。SciPy
是个开源工具包,可以从http://scipy.org/Download 下载。
1.4.1 图像模糊
图像的高斯模糊是非常经典的图像卷积例子。本质上,图像模糊就是将(灰度)图像 I 和一个高斯核进行卷积操作:
Iσ = I*Gσ
其中 * 表示卷积操作;Gσ 是标准差为 σ 的二维高斯核,定义为 :
高斯模糊通常是其他图像处理操作的一部分,比如图像插值操作、兴趣点计算以及很多其他应用。
SciPy
有用来做滤波操作的 scipy.ndimage.filters
模块。该模块使用快速一维分离的方式来计算卷积。你可以像下面这样来使用它:
from PIL import Image
from numpy import *
from scipy.ndimage import filters
im = array(Image.open('empire.jpg').convert('L'))
im2 = filters.gaussian_filter(im,5)
上面 guassian_filter()
函数的最后一个参数表示标准差。
图 1-9 显示了随着 σ 的增加,一幅图像被模糊的程度。σ 越大,处理后的图像细节丢失越多。如果打算模糊一幅彩色图像,只需简单地对每一个颜色通道进行高斯模糊:
im = array(Image.open('empire.jpg'))
im2 = zeros(im.shape)
for i in range(3):
im2[:,:,i] = filters.gaussian_filter(im[:,:,i],5)
im2 = uint8(im2)
在上面的脚本中,最后并不总是需要将图像转换成 uint8 格式,这里只是将像素值用八位来表示。我们也可以使用:
im2 = array(im2,'uint8')
来完成转换。
关于该模块更多的内容以及不同参数的选择,请查看http://docs.scipy.org/doc/scipy/reference/ndimage.html 上 SciPy
文档中的 scipy.ndimage
部分。
图 1-9:使用 scipy.ndimage.filters
模块进行高斯模糊:(a)原始灰度图像;(b)使用 σ=2 的高斯滤波器;(c)使用 σ=5 的高斯滤波器;(d)使用 σ=10 的高斯滤波器
1.4.2 图像导数
整本书中可以看到,在很多应用中图像强度的变化情况是非常重要的信息。强度的变化可以用灰度图像 I(对于彩色图像,通常对每个颜色通道分别计算导数)的 x 和 y 方向导数 Ix 和 Iy 进行描述。
图像的梯度向量为∇I = [Ix, Iy]T。梯度有两个重要的属性,一是梯度的大小:
它描述了图像强度变化的强弱,一是梯度的角度:
α=arctan2(Iy, Ix)
描述了图像中在每个点(像素)上强度变化最大的方向。NumPy
中的 arctan2()
函数返回弧度表示的有符号角度,角度的变化区间为 -π...π。
我们可以用离散近似的方式来计算图像的导数。图像导数大多数可以通过卷积简单地实现:
Ix=I*Dx 和 Iy=I*Dy
对于 Dx 和 Dy,通常选择 Prewitt 滤波器:
和
或者 Sobel 滤波器:
和
这些导数滤波器可以使用 scipy.ndimage.filters
模块的标准卷积操作来简单地实现,例如:
from PIL import Image
from numpy import *
from scipy.ndimage import filters
im = array(Image.open('empire.jpg').convert('L'))
# Sobel 导数滤波器
imx = zeros(im.shape)
filters.sobel(im,1,imx)
imy = zeros(im.shape)
filters.sobel(im,0,imy)
magnitude = sqrt(imx**2+imy**2)
上面的脚本使用 Sobel
滤波器来计算 x 和 y 的方向导数,以及梯度大小。sobel()
函数的第二个参数表示选择 x 或者 y 方向导数,第三个参数保存输出的变量。图 1-10 显示了用 Sobel 滤波器计算出的导数图像。在两个导数图像中,正导数显示为亮的像素,负导数显示为暗的像素。灰色区域表示导数的值接近于零。
图 1-10:使用 Sobel 导数滤波器计算导数图像:(a)原始灰度图像;(b)x 导数图像;(c)y导数图像;(d)梯度大小图像
上述计算图像导数的方法有一些缺陷:在该方法中,滤波器的尺度需要随着图像分辨率的变化而变化。为了在图像噪声方面更稳健,以及在任意尺度上计算导数,我们可以使用高斯导数滤波器:
Ix=I*Gσx 和 Iy=I*Gσy
其中,Gσx和 Gσy 表示 Gσ 在 x 和 y 方向上的导数,Gσ 为标准差为 σ 的高斯函数。
我们之前用于模糊的 filters.gaussian_filter()
函数可以接受额外的参数,用来计算高斯导数。可以简单地按照下面的方式来处理:
sigma = 5 # 标准差
imx = zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (0,1), imx)
imy = zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (1,0), imy)
该函数的第三个参数指定对每个方向计算哪种类型的导数,第二个参数为使用的标准差。你可以查看相应文档了解详情。图 1-11 显示了不同尺度下的导数图像和梯度大小。你可以和图 1-9 中做相同尺度模糊的图像做比较。
图 1-11:使用高斯导数计算图像导数:x 导数图像(上),y 导数图像(中),以及梯度大小图像(下);(a)为原始灰度图像,(b)为使用 σ=2 的高斯导数滤波器处理后的图像,(c)为使 用 σ=5 的高斯导数滤波器处理后的图像,(d)为使用 σ=10 的高斯导数滤波器处理后的图像
1.4.3 形态学:对象计数
形态学(或数学形态学)是度量和分析基本形状的图像处理方法的基本框架与集合。形态学通常用于处理二值图像,但是也能够用于灰度图像。二值图像是指图像的每个像素只能取两个值,通常是 0 和 1。二值图像通常是,在计算物体的数目,或者度量其大小时,对一幅图像进行阈值化后的结果。你可以从 http://en.wikipedia.org/wiki/Mathematical_morphology 大体了解形态学及其处理图像的方式。
scipy.ndimage
中的 morphology
模块可以实现形态学操作。你可以使用 scipy.ndimage
中的measurements
模块来实现二值图像的计数和度量功能。下面通过一个简单的例子介绍如何使用它们。
考虑在图 1-12a3 里的二值图像,计算该图像中的对象个数可以通过下面的脚本实现:
3这个图像实际上是图像“分割”后的结果。如果你想知道该图像是如何创建的,可以查看 9.3 节。
from scipy.ndimage import measurements,morphology
# 载入图像,然后使用阈值化操作,以保证处理的图像为二值图像
im = array(Image.open('houses.png').convert('L'))
im = 1*(im<</span>128)
labels, nbr_objects = measurements.label(im)
print "Number of objects:", nbr_objects
上面的脚本首先载入该图像,通过阈值化方式来确保该图像是二值图像。通过和 1 相乘,脚本将布尔数组转换成二进制表示。然后,我们使用 label()
函数寻找单个的物体,并且按照它们属于哪个对象将整数标签给像素赋值。图 1-12b 是 labels
数组的图像。图像的灰度值表示对象的标签。可以看到,在一些对象之间有一些小的连接。进行二进制开(binary open)操作,我们可以将其移除:
# 形态学开操作更好地分离各个对象
im_open = morphology.binary_opening(im,ones((9,5)),iterations=2)
labels_open, nbr_objects_open = measurements.label(im_open)
print "Number of objects:", nbr_objects_open
binary_opening()
函数的第二个参数指定一个数组结构元素。该数组表示以一个像素为中心时,使用哪些相邻像素。在这种情况下,我们在 y 方向上使用 9 个像素(上面 4 个像素、像素本身、下面 4 个像素),在 x 方向上使用 5 个像素。你可以指定任意数组为结构元素,数组中的非零元素决定使用哪些相邻像素。参数 iterations
决定执行该操作的次数。你可以尝试使用不同的迭代次数 iterations
值,看一下对象的数目如何变化。你可以在图 1-12c 与图 1-12d 中查看经过开操作后的图像,以及相应的标签图像。正如你想象的一样,binary_closing()
函数实现相反的操作。我们将该函数和在 morphology
和 measurements
模块中的其他函数的用法留作练习。你可以从 scipy.ndimage
模块文档 http://docs.scipy.org/doc/scipy/reference/ndimage.html 中了解关于这些函数的更多知识。
图 1-12:形态学示例。使用二值开操作将对象分开,然后计算物体的数目:(a)为原始二值图像;(b)为对应原始图像的标签图像,其中灰度值表示物体的标签;(c)为使用开操作后的二值图像;(d)为开操作后图像的标签图像
1.4.4 一些有用的SciPy
模块
SciPy
中包含一些用于输入和输出的实用模块。下面介绍其中两个模块:io
和 misc
。
读写.mat文件
如果你有一些数据,或者在网上下载到一些有趣的数据集,这些数据以 Matlab 的 .mat 文件格式存储,那么可以使用
scipy.io
模块进行读取。data = scipy.io.loadmat('test.mat')
上面代码中,
data
对象包含一个字典,字典中的键对应于保存在原始 .mat 文件中的变量名。由于这些变量是数组格式的,因此可以很方便地保存到 .mat 文件中。你仅需创建一个字典(其中要包含你想要保存的所有变量),然后使用savemat()
函数:data = {}
data['x'] = x
scipy.io.savemat('test.mat',data)
因为上面的脚本保存的是数组 x,所以当读入到 Matlab 中时,变量的名字仍为 x。关于
scipy.io
模块的更多内容,请参见在线文档http://docs.scipy.org/doc/scipy/reference/io.html。以图像形式保存数组
因为我们需要对图像进行操作,并且需要使用数组对象来做运算,所以将数组直接保存为图像文件 4 非常有用。本书中的很多图像都是这样的创建的。
imsave()
函数可以从scipy.misc
模块中载入。要将数组im
保存到文件中,可以使用下面的命令:from scipy.misc import imsave
imsave('test.jpg',im)
scipy.misc
模块同样包含了著名的 Lena 测试图像:lena = scipy.misc.lena()
该脚本返回一个 512×512 的灰度图像数组。
4所有 Pylab
图均可保存为多种图像格式,方法是点击图像窗口中的“保存”按钮。
1.5 高级示例:图像去噪
我们通过一个非常实用的例子——图像的去噪——来结束本章。图像去噪是在去除图像噪声的同时,尽可能地保留图像细节和结构的处理技术。我们这里使用 ROF(Rudin-Osher-Fatemi)去噪模型。该模型最早出现在文献 [28] 中。图像去噪对于很多应用来说都非常重要;这些应用范围很广,小到让你的假期照片看起来更漂亮,大到提高卫星图像的质量。ROF 模型具有很好的性质:使处理后的图像更平滑,同时保持图像边缘和结构信息。
ROF 模型的数学基础和处理技巧非常高深,不在本书讲述范围之内。在讲述如何基于 Chambolle 提出的算法 [5] 实现 ROF 求解器之前,本书首先简要介绍一下 ROF 模型。
一幅(灰度)图像 I 的全变差(Total Variation,TV)定义为梯度范数之和。在连续表示的情况下,全变差表示为:
(1.1)
在离散表示的情况下,全变差表示为:
其中,上面的式子是在所有图像坐标 x=[x, y] 上取和。
在 Chambolle 提出的 ROF 模型里,目标函数为寻找降噪后的图像 U,使下式最小:
其中范数 ||I-U|| 是去噪后图像 U 和原始图像 I 差异的度量。也就是说,本质上该模型使去噪后的图像像素值“平坦”变化,但是在图像区域的边缘上,允许去噪后的图像像素值“跳跃”变化。
按照论文 [5] 中的算法,我们可以按照下面的代码实现 ROF 模型去噪:
from numpy import *
def denoise(im,U_init,tolerance=0.1,tau=0.125,tv_weight=100):
""" 使用A. Chambolle(2005)在公式(11)中的计算步骤实现Rudin-Osher-Fatemi(ROF)去噪模型
输入:含有噪声的输入图像(灰度图像)、U 的初始值、TV 正则项权值、步长、停业条件
输出:去噪和去除纹理后的图像、纹理残留"""
m,n = im.shape # 噪声图像的大小
# 初始化
U = U_init
Px = im # 对偶域的x 分量
Py = im # 对偶域的y 分量
error = 1
while (error > tolerance):
Uold = U
# 原始变量的梯度
GradUx = roll(U,-1,axis=1)-U # 变量U 梯度的x 分量
GradUy = roll(U,-1,axis=0)-U # 变量U 梯度的y 分量
# 更新对偶变量
PxNew = Px + (tau/tv_weight)*GradUx
PyNew = Py + (tau/tv_weight)*GradUy
NormNew = maximum(1,sqrt(PxNew**2+PyNew**2))
Px = PxNew/NormNew # 更新x 分量(对偶)
Py = PyNew/NormNew # 更新y 分量(对偶)
# 更新原始变量
RxPx = roll(Px,1,axis=1) # 对x 分量进行向右x 轴平移
RyPy = roll(Py,1,axis=0) # 对y 分量进行向右y 轴平移
DivP = (Px-RxPx)+(Py-RyPy) # 对偶域的散度
U = im + tv_weight*DivP # 更新原始变量
# 更新误差
error = linalg.norm(U-Uold)/sqrt(n*m);
return U,im-U # 去噪后的图像和纹理残余
在这个例子中,我们使用了 roll()
函数。顾名思义,在一个坐标轴上,它循环“滚动”数组中的元素值。该函数可以非常方便地计算邻域元素的差异,比如这里的导数。我们还使用了linalg.norm()
函数,该函数可以衡量两个数组间(这个例子中是指图像矩阵 U和 Uold)的差异。我们将这个 denoise()
函数保存到 rof.py 文件中。
下面使用一个合成的噪声图像示例来说明如何使用该函数:
from numpy import *
from numpy import random
from scipy.ndimage import filters
import rof
# 使用噪声创建合成图像
im = zeros((500,500))
im[100:400,100:400] = 128
im[200:300,200:300] = 255
im = im + 30*random.standard_normal((500,500))
U,T = rof.denoise(im,im)
G = filters.gaussian_filter(im,10)
# 保存生成结果
from scipy.misc import imsave
imsave('synth_rof.pdf',U)
imsave('synth_gaussian.pdf',G)
原始图像和图像的去噪结果如图 1-13 所示。正如你所看到的,ROF 算法去噪后的图像很好地保留了图像的边缘信息。
图 1-13:使用 ROF 模型对合成图像去噪:(a)为原始噪声图像;(b)为经过高斯模糊的图像(σ=10);(c)为经过 ROF 模型去噪后的图像
下面看一下在实际图像中使用 ROF 模型去噪的效果:
from PIL import Image
from pylab import *
import rof
im = array(Image.open('empire.jpg').convert('L'))
U,T = rof.denoise(im,im)
figure()
gray()
imshow(U)
axis('equal')
axis('off')
show()
经过 ROF 去噪后的图像如图 1-14c 所示。为了方便比较,该图中同样显示了模糊后的图像。可以看到,ROF 去噪后的图像保留了边缘和图像的结构信息,同时模糊了“噪声”。
图 1-14:使用 ROF 模型对灰度图像去噪:(a)为原始噪声图像;(b)为经过高斯模糊的图像(σ=5);(c)为经过 ROF 模型去噪后的图像
Python图像处理库(2)的更多相关文章
- Python图像处理库:Pillow 初级教程
Python图像处理库:Pillow 初级教程 2014-09-14 翻译 http://pillow.readthedocs.org/en/latest/handbook/tutorial.html ...
- Python图像处理库:PIL中Image,ImageDraw等基本模块介绍
Python图像处理库:PIL中Image,ImageDraw等基本模块介绍 标签: 图像处理PILPYTHON 2016-08-19 10:58 461人阅读 评论(0) 收藏 举报 分类: 其他 ...
- Python图像处理库PIL中图像格式转换(一)
在数字图像处理中,针对不同的图像格式有其特定的处理算法. 所以,在做图像处理之前,我们须要考虑清楚自己要基于哪种格式的图像进行算法设计及事实上现.本文基于这个需求.使用python中的图像处理库PIL ...
- Python图像处理库PIL中图像格式转换
o 在数字图像处理中,针对不同的图像格式有其特定的处理算法.所以,在做图像处理之前,我们需要考虑清楚自己要基于哪种格式的图像进行算法设计及其实现.本文基于这个需求,使用python中的图像处理库PIL ...
- Python图像处理库(1)
转自:http://www.ituring.com.cn/tupubarticle/2024 第 1 章 基本的图像操作和处理 本章讲解操作和处理图像的基础知识,将通过大量示例介绍处理图像所需的 Py ...
- Python图像处理库Pillow入门
http://python.jobbole.com/84956/ Pillow是Python里的图像处理库(PIL:Python Image Library),提供了了广泛的文件格式支持,强大的图像处 ...
- Python图像处理库Pillow常用使用方法
PIL(Python Imaging Library)是Python一个强大方便的图像处理库,只支持到Python2.7.Pillow是PIL的一个派生分支,在Python3中用Pillow代替PIL ...
- Python图像处理库——PIL
PIL全称Python Image Library,是python官方的图像处理库,包含各种图像处理模块.Pillow是PIL的一个派生分支,包含与PIL相同的功能,并且更灵活.python3.0之后 ...
- Python图像处理库(PIL)
官方:(详细)http://pillow.readthedocs.io/en/3.1.x/reference/ImageDraw.html http://pillow.readthedocs.io/e ...
- Windows安装Python图像处理库:PIL模块
平常一般都在Linux下用Python,今天女票突然说让帮忙把一些图片全部弄成一个分辨率的,作为程序员,这种重复的工作还是交给计算机吧. 废话不多说,打开Cmd看下Windows的python下面是否 ...
随机推荐
- NOIP2016Day2T2蚯蚓(队列+坑爹洛谷毁我青春)
“卡常技术哪家强,中国OJ找洛谷” 去掉两个语句之后...95-->100 题目大意就不说了QWQ 首先65分裸优先队列,线段树,堆都可以... 100分:开三个队列,第一个存没被砍过的蚯蚓(要 ...
- oracle数据库解锁
当我们修改数据库时用for update 或者使用rowId修改后,对表进行了锁定,由于某种原因没有对他进行关闭,我们需要关闭 select b.username,b.sid,b.serial#,lo ...
- 负载均衡配置(基于Nginx)
以下是基于nginx进行负载均衡配置的流程: 服务器配置如下: 1. 安装nginx的服务器:192.168.1.1 2. nginx配置负载均衡位置及端口:192.168.1.1 80端口 3. ...
- ACE_Message_Block功能简介
转载于:http://www.cnblogs.com/TianFang/archive/2006/12/30/607960.html ACE_Message_Block在Ace中用来表示消息的存放空间 ...
- mysql的concat用法
问题提出:mybatis的mapper文件中的模糊查询: mysql CONCAT()函数用于将多个字符串连接成一个字符串,是最重要的mysql函数之一,下面就将为您详细介绍mysql CONCAT( ...
- dijkstra spfa prim kruskal 总结
最短路和最小生成树应该是很早学的,大家一般都打得烂熟,总结一下几个问题 一 dijkstra O((V+E)lgV) //V节点数 E边数 dijkstra不能用来求最长路,因为此时局部最优解已经 ...
- 【poj1830-开关问题】高斯消元求解异或方程组
第一道高斯消元题目~ 题目:有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关 ...
- 模板复习【updating】
马上就要noi了……可能滚粗已经稳了……但是还是要复习模板啊 LCT: bzoj2049 1A 7min # include <stdio.h> # include <string. ...
- POJ 3069 Saruman's Army (模拟)
题目连接 Description Saruman the White must lead his army along a straight path from Isengard to Helm's ...
- jq_$.extend和$.fn.extend插件开发和方法的封装
--------杂谈-------- 随着使用的使用js和jq使用的越来越娴熟,也就是说日常产品经理给的一些需求,已经在自己的能力范围内了.空出来了一点时间,来研究如何优化你的代码, 不管是性能上,还 ...