Python的dict

Python内置了字典:dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。

比如,要根据同学的名字查找对应的成绩,如果用list来实现,那么需要用两个list:

names = ['Michael', 'Bob', 'Tracy']
scores = [95, 75, 85]

给定一个名字,要查找对应的成绩,就要先在names中找到对应的位置,再根据得到的索引从scores取对应的成绩,list越长,耗时越长。

如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表多大,查找速度都不会太慢:

d = {'Michael':95,'Bob':100,'Tracy':80}
print d["Michael"]

为什么dict查找速度这么快?因为dict的实现原理和查字典是一样的。假设字典包含了1万个word,我们要查某一个word,一个办法是把字典从第一页往后翻,直到找到我们想要的字为止,这种方法就是list中查找元素的方法,list越大,查找速度越慢。

第二种方法是先在字典的索引表里(比如部首表)查这个字对应的页码,然后直接翻到该页,找到这个字,无论找哪个字,这种查找速度都非常快,不会随着字典大小的增加而变慢。

dict就是第二种实现方式,给定一个名字,比如“Michael”,dict在内部就可以直接计算出Michael对应的存放成绩的“页码”,也就是95这个数字存放的地址,直接取出来,所以速度非常快,。

这种key-value存储方式,在放进去的时候,必须根据key计算出value存放的位置,这样取的时候才能根据key直接拿到value。

把数据放入dict的方法,除了初始化时指定外,还可以通过key放入:

d = {'Michael':95,'Bob':100,'Tracy':80}
d["A"] = 60
print d["A"]
print d
60
{'A': 60, 'Bob': 100, 'Michael': 95, 'Tracy': 80

由于一个key只能对应一个value,所以多次对一个key放入value,后面的值会把前面的值冲掉:

d["A"] = 60
print d["A"]
d["A"] = 100
print d["A"]
60
100

如果key不存在,dict就会报错,要避免key不存在引发的错误,有两种解决办法,一是通过in判断key是否存在:

d = {'Michael':95,'Bob':100,'Tracy':80}
d['A'] = 60
print d
print 'A' in d
print 'B' in d True
False

第二种方法是通过dict提供的get方法,如果key不存在是,可以返回None,或者自己指定的value:

d = {'Michael':95,'Bob':100,'Tracy':80}
d['A'] = 60
print d.get('A') 60
None

要删除一个key,用pop(key)方法,对应的value也会从dict中删除:

d = {'Michael':95,'Bob':100,'Tracy':80}
d['A'] = 60
print d
d.pop('A') {'A': 60, 'Bob': 100, 'Michael': 95, 'Tracy': 80}
{'Bob': 100, 'Michael': 95, 'Tracy': 80}

Note:dict内部存放的顺序和key放入的顺序是没有关系的。

和list比较,dict有以下几个特点:

  1. 查找和插入速度极快,不会随key的增加而增加;
  2. 需要占用大量的内存,内存浪费多。

而list相反:

  1. 查找和插入的实践随着元素的增加而增加;
  2. 占用空间小,浪费内存少。

所以,dict是用空间来换取实践的一种方法。

dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确的使用dict非常重要,牢记的第一条是dict的key必须是不可变的对象。

这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得到的结果不同,那dict内部就混乱了,这个通过key计算位置的算法称为hash算法,要保证hash的正确性,作为key的对象就不能变。

在Python中,字符串、整数都是不可变的,因此,可以放心地作为key。而list是可变的,不能将list作为key。

>>> key = [1,2,3,4]
>>> d[key] = 87 Traceback (most recent call last):
File "<pyshell#34>", line 1, in <module>
d[key] = 87
TypeError: unhashable type: 'list'
>>>

Python的set

set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以在set中,没有重复的key。

要创建一个set,需要提供一个list作为输入集合:

>>> s = set([1,2,3])
>>> s
set([1, 2, 3])

重复元素在set中自动被过滤:

>>> s = set([1,1,1,1,2])
>>> s
set([1, 2])
>>>

通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果:

>>> s = set([1,2,3,4])
>>> s
set([1, 2, 3, 4])
>>> s.add(4)
>>> s
set([1, 2, 3, 4])
>>> s.add(4)
>>> s
set([1, 2, 3, 4])
>>>

通过remove(key)方法可以删除元素:

>>> s
set([1, 2, 3, 4])
>>> s.remove(4)
>>> s
set([1, 2, 3])
>>>

set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集,并集操作:

>>> s1 = set([1,2,3])
>>> s2 = set([2,3,4])
>>> s1 & s2
set([2, 3])
>>> s1 | s2
set([1, 2, 3, 4])
>>>

set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”。试试把list放入set:

>>> s1.add([5,6])

Traceback (most recent call last):
File "<pyshell#4>", line 1, in <module>
s1.add([5,6])
TypeError: unhashable type: 'list'
>>>

再议不可变对象

上面讲了,str是不变对象,而list是可变对象。

对于可变对象,比如list,对list进行操作,list内部的内容是会变化的,比如:

>>> a = ['c','b','a']
>>> a
['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']
>>>

而对于不可变对象,比如str,对str进行操作呢:

>>> a = 'abc'
>>> a
'abc'
>>> a.replace('a','A')
'Abc'
>>> a
'abc'
>>>

虽然字符串有个replace()方法,也确实变出了‘Abc’,但变量a最后仍是‘abc’,

>>> a = 'abc'
>>> b = a.replace('a','A')
>>> b
'Abc'
>>> a
'abc'
>>>

要牢记的是,a是变量,而‘abc’才是字符串对象!有些时候,我们说对象a的内容是‘abc’,但其实指的是,a本身是一个变量,它指向的对象的内容才是‘abc’。

当调用a.replace('a','A')时,实际上调用方法replace是作用在字符串对象‘abc’上的,而这个方法虽然名字叫replace,但却没有改变字符串‘abc’的内容。相反,replace方法创建了一个新的字符串‘Abc’并返回,如果我们用变量b指向新的字符串,就容易理解了,变量a仍指向原有的字符串‘abc’,但变量b却指向新字符串‘Abc’了:

总结

使用key-value存储结构的dict在Python中非常有用,选择不可变对象作为key很重要,最常用的key是字符串。

tuple虽然是不变对象,对于不变对象来说,调用对象自身的任意方法,也不会改变该对象自身的内容。相反,这些方法会创建新的对象并返回,这样就保证了不可变独享本身永远是不可变的。

试着把(1,2,3)和(1,[2,3])放入dict或set中:

>>> s = set([(1,2,3),(1,[2,3])])

Traceback (most recent call last):
File "<pyshell#17>", line 1, in <module>
s = set([(1,2,3),(1,[2,3])])
TypeError: unhashable type: 'list'
>>> s = set([(1,2,3),(1)])
>>> s
set([1, (1, 2, 3)])
>>> d = [(1,2,3),(1,[2,3])]
>>> d
[(1, 2, 3), (1, [2, 3])]
>>>

Python基础教程-Dict和Set的更多相关文章

  1. python基础教程——dict和set

    dict python内置字典:dict,全称dictionary,在其他语言中称为map,使用键值对存储. ex: d = {'xiaoli' : 95 , 'xiaoming' : 98 , 'x ...

  2. 《python基础教程(第二版)》学习笔记 字典(第4章)

    <python基础教程(第二版)>学习笔记 字典(第4章)创建字典:d={'key1':'value1','key2':'value2'}lst=[('key1','value1'),(' ...

  3. Python基础教程-02

    <Python基础教程> 第3章 使用字符串 字符串方法find返回的并非布尔值.如果find像这样返回0,就意味着它在索引0处找到 了指定的子串 join可合并一个字符串列表,不能合并数 ...

  4. Python基础教程(第3版)PDF高清完整版免费下载|百度云盘

    百度云盘:Python基础教程(第3版)PDF高清完整版免费下载 提取码:gkiy 内容简介 本书包括Python程序设计的方方面面:首先从Python的安装开始,随后介绍了Python的基础知识和基 ...

  5. Python基础教程 (第2+3 版)打包pdf|内附网盘链接提取码

                <Python基础教程 第3版>包括Python程序设计的方方面面:首先,从Python的安装开始,随后介绍了Python的基础知识和基本概念,包括列表.元组.字符 ...

  6. python基础之dict、set及字符

    python基础之dict.set及字符串处理 本节内容 字典介绍及内置方法 集合介绍 字符串处理 1.字典介绍及内置方法 字典是python中唯一的映射类型,采用键值对(key-value)的形式存 ...

  7. 改写《python基础教程》中的一个例子

    一.前言 初学python,看<python基础教程>,第20章实现了将文本转化成html的功能.由于本人之前有DIY一个markdown转html的算法,所以对这个例子有兴趣.可仔细一看 ...

  8. .Net程序员之Python基础教程学习----列表和元组 [First Day]

    一. 通用序列操作: 其实对于列表,元组 都属于序列化数据,可以通过下表来访问的.下面就来看看序列的基本操作吧. 1.1 索引: 序列中的所有元素的下标是从0开始递增的. 如果索引的长度的是N,那么所 ...

  9. python基础——使用dict和set

    python基础——使用dict和set dict Python内置了字典:dict的支持,dict全称dictionary,在其它语言中也称为map(映射),使用键-值(key-value)存储,具 ...

随机推荐

  1. EM5-PE2B

    1. vocabulary once adv. 一次,曾经 They cocktailed once every week. He once lived in shanghai. twice adv ...

  2. C#通过SFTP协议操作文件

    本文主要是C#调用SSH实现文件上传下载功能,主要是要引用第三方类库Tamir.SharpSSH.dll. 以下是SFTPHelper类,实现了对文件的操作,可供参考. public class SF ...

  3. 初识md5碰撞与crc32碰撞

    现在是晚上23:29.写这篇文章呢,是因为早些时候我胃疼,是因为凉导致的胃疼.凉呢喝了一些热水,喝完热水胃倒是不疼了,但是由于我喝的是茶叶开水,于是就导致失眠了.想来想去这漫漫长夜也没意思,于是就决定 ...

  4. ecmall 中Url体系改造实践

    前面有过一篇ECMall 中URL体系的改造思路http://www.cnblogs.com/x3d/p/3627260.html 这两天基于这个思路,做了实践. 为什么要改造? ECMall是完整的 ...

  5. FastDFS安装详解

    1.安装环境 os:centos6.5 Fastdfs版本:FastDFS_v5.08.tar.gz 下载地址:https://sourceforge.net/projects/fastdfs/fil ...

  6. 偶遇 sqlserver 参数嗅探

    需求: 费用统计 环境: 查询设计多张大表 解决方案: 优化查询语句,封装成存储过程,建立索引,最终查询速度很不错.部署上线,告一段落... 一段时间后投诉来了... 客户投诉说查询没内容,我看了日志 ...

  7. linux引导模式两种

    https://www.ibm.com/developerworks/cn/linux/l-bootload.html

  8. beautifulSoup安装

    Python2.7 + beautifulSoup 4.4.1 安装配置 原创 2016年05月09日 10:20:30 标签: python 1261 1. 前言 最近研究python 的爬虫功能, ...

  9. 01 Java图形化界面设计——容器(JFrame)

    程序是为了方便用户使用的,因此实现图形化界面的程序编写是所有编程语言发展的必然趋势,在命令提示符下运行的程序可以让我们了解java程序的基本知识体系结构,现在就进入java图形化界面编程. 一.Jav ...

  10. Android Canvas和Paint基本使用

    这篇文章主要介绍下画笔Paint和画布Canvas的基本使用  1.Paint 创建对象Paint mPaint = new Paint(); 常用的基本方法有 :                mP ...