Balanced Lineup
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 38942   Accepted: 18247
Case Time Limit: 2000MS

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range
of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest
cow in the group.

Input

Line 1: Two space-separated integers, N andQ.

Lines 2..N+1: Line i+1 contains a single integer that is the height of cowi

Lines N+2..N+Q+1: Two integers A and B (1 ≤A
BN), representing the range of cows from A toB inclusive.

Output

Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

Source

USACO 2007 January Silver



题目大意:在一定区间内给定一些数。要求求出在某一区间内最大值和最小值的差。

线段树的题目。对于这道题目,既然是求最大值和最小值的差,那么必定要在区间里面存放最大值和最小值。同一时候这道题目仅仅是单纯的要求查询区间内的差值,不须要进行更新。

#include<stdio.h>
#include<string.h>
#define max(a,b) a>b?a:b
#define min(a,b) a<b? a:b
#define INF 99999999
#define N 50005
struct tree{
int l,r,maxi,mini;
int mid(){
return l+r>>1;
}
}tree[N<<2];
int ma=-INF,mi=INF;
void build(int l,int r,int root)
{
tree[root].l=l;
tree[root].r=r;
tree[root].maxi=-INF;
tree[root].mini=INF; //初始化最大最小值
if(l==r){ return;
}
int mid=l+r>>1;
build(l,mid,root<<1);
build(mid+1,r,root<<1|1);
}
void update(int i,int z,int root)
{ if(tree[root].l==tree[root].r){
tree[root].mini=tree[root].maxi=z;
return;
}
tree[root].maxi=max(tree[root].maxi,z);
tree[root].mini=min(tree[root].mini,z); //每次都更新最大和最小值
if(i<=tree[root].mid())update(i,z,root<<1); //这里将i下面的节点所有更新。 而i与mid 是有关系的。
else update(i,z,root<<1|1);
}
void Query(int l,int r,int root)
{
if(tree[root].mini>=mi&&tree[root].maxi<=ma)return;
if(l==tree[root].l&&r==tree[root].r){
mi=min(mi,tree[root].mini);
ma=max(ma,tree[root].maxi);
return;
}
int mid=tree[root].l+tree[root].r>>1;
if(r<=mid){
Query(l,r,root<<1);
}
else if(l>mid){
Query(l,r,root<<1|1);
}
else {
Query(l,mid,root<<1);
Query(mid+1,r,root<<1|1);
}
return ;
}
int main()
{
int n,Q,cow[200005],a,b;
int i,j,k;
while(scanf("%d%d",&n,&Q)!=EOF)
{
build(1,n,1);
for(i=1;i<=n;i++)
{
scanf("%d",&cow[i]);
update(i,cow[i],1); //对于第i个数字进行插入
} while(Q--)
{
scanf("%d%d",&a,&b);
ma=-INF;
mi=INF;
Query(a,b,1);
printf("%d\n",ma-mi);
}
}
return 0;
}

poj 3246 Balanced Lineup(线段树)的更多相关文章

  1. [POJ] 3264 Balanced Lineup [线段树]

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34306   Accepted: 16137 ...

  2. poj 3264 Balanced Lineup(线段树、RMQ)

    题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...

  3. POJ 3264 Balanced Lineup 线段树RMQ

    http://poj.org/problem?id=3264 题目大意: 给定N个数,还有Q个询问,求每个询问中给定的区间[a,b]中最大值和最小值之差. 思路: 依旧是线段树水题~ #include ...

  4. POJ 3264 Balanced Lineup 线段树 第三题

    Balanced Lineup Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line ...

  5. POJ 3264 Balanced Lineup (线段树)

    Balanced Lineup For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the s ...

  6. POJ - 3264 Balanced Lineup 线段树解RMQ

    这个题目是一个典型的RMQ问题,给定一个整数序列,1~N,然后进行Q次询问,每次给定两个整数A,B,(1<=A<=B<=N),求给定的范围内,最大和最小值之差. 解法一:这个是最初的 ...

  7. Poj 3246 Balanced Lineup(线段树基础)

    依旧是线段树基础题 询问区间的最大值和最小值之差,只有询问,没有插入删除.继续理解基础线段树 #include <iostream> #include <algorithm> ...

  8. 【POJ】3264 Balanced Lineup ——线段树 区间最值

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34140   Accepted: 16044 ...

  9. BZOJ-1699 Balanced Lineup 线段树区间最大差值

    Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 41548 Accepted: 19514 Cas ...

随机推荐

  1. Bayesian statistics

    文件夹 1Bayesian model selection贝叶斯模型选择 1奥卡姆剃刀Occams razor原理 2Computing the marginal likelihood evidenc ...

  2. js math 对数和指数处理 expm1 log1p

    1.Math.expm1() Math.expm1(x)返回 ex - 1,即Math.exp(x) - 1. Math.expm1(-1) // -0.6321205588285577 Math.e ...

  3. Jenkins高速上手

    http://www.cnblogs.com/puresoul/p/4813551.html .Jenkins下载安装 1.到官网下载jenkins.war包:http://jenkins-ci.or ...

  4. html热点区域

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. 如何设置outlook实现自动秘密抄送邮件的功能?

    很多朋友会发现虽然在家里同步了公司的邮箱可以正常收发邮件,可是每当使用家里的outlook发送相关邮件的时候,在公司的邮箱里找不到相关的发件记录,只能同步收件箱,而不能同步发件箱应该是比较让人困扰的问 ...

  6. Python进阶---python strip() split()函数实战(转)

    先看一个例子: >>> ipaddr = 10.122.19.10 File "", line 1 ipaddr = 10.122.19.10 ^ SyntaxE ...

  7. js设置加载进度提示

      CreateTime--2017年8月23日09:17:46Author:Marydon js设置加载进度提示 第一部分:CSS /*加载样式*/ .Loading { position: abs ...

  8. 基于RxJava2+Retrofit2简单易用的网络请求实现

    代码地址如下:http://www.demodashi.com/demo/13473.html 简介 基于RxJava2+Retrofit2实现简单易用的网络请求,结合android平台特性的网络封装 ...

  9. 忽略警告注解@SuppressWarnings详解

    简介:java.lang.SuppressWarnings是J2SE 5.0中标准的Annotation之一.可以标注在类.字段.方法.参数.构造方法,以及局部变量上. 作用:告诉编译器忽略指定的警告 ...

  10. Windows 10 KMS 激活方法

    本篇文章由:http://xinpure.com/windows-10-activate-method/ 摘抄: http://www.nruan.com/win-key.html 须知:如果需要在线 ...