/**
题目:hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4106
题意:给你n个数,每连续m个数,最多选k个数,问可以选的数的权值和最大多少。
思路:可以转化为区间k覆盖问题。区间k覆盖问题是每个点最多被k个区间覆盖。本题是每个区间最多选k个点。
刚好相反。我的做法有点不同其他博客那种做法。当然本质一样。 我这里的i就是原来n个数的下标,现在作为图中该数的节点编号,假设是从i连一条弧线出来,起点是i,终点是j,费用为i这个点的数值。j应该是多少呢?
区间为[i,i+m-1],经过从i为起点连的弧线表示选了下标为i的这个数。如果j仍然在[i,i+m-1]这个区间范围内,那么流过i->j这条弧线得流量还可以从[i,i+m-1]的另一个点k作为起点
流出来,又会把下标为k的数值计算进去。而流量为1表示该全区间选了一个数,而这里显然一个流量为1,贡献了不止一个数。可能选择更多的数。
所以j=i+m; 记住!一个流量保证在同一个区间只贡献一次。该流量可以继续流到别的区间继续贡献。这就是为什么起点s->1,cap = k;表示最多k个流量,那么一个区间最多选k个数。 建图:原来的n个数的数值为w1~wn.
s->1,cap=k,cost=0;
1->2,cap=INF,cost=0;
2->3..
..
..
..
n-1->n,cap=INF,cost=0;
n->t (t=n+1) cap=k,cost=0; 然后枚举1到n;
i->min(i+m,t), cap=1, cost = -w[i]; 求s->t最小费用最大流。 */
#include<iostream>
#include<cstring>
#include<vector>
#include<map>
#include<cstdio>
#include<sstream>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long LL;
const int INF = 0x3f3f3f3f;
const int N = ;
struct Edge{
int from, to, cap, flow, cost;
Edge(int u,int v,int c,int f,int w):from(u),to(v),cap(c),flow(f),cost(w){}
};
struct MCMF{
int n, m;
vector<Edge> edges;
vector<int> G[N];
int inq[N];
int d[N];
int p[N];
int a[N]; void init(int n){
this->n = n;
for(int i = ; i <= n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from,int to,int cap,long long cost){
edges.push_back(Edge(from,to,cap,,cost));
edges.push_back(Edge(to,from,,,-cost));
m = edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
} bool BellmanFord(int s,int t,int &flow,long long &cost){
for(int i = ; i <= n; i++) d[i] = INF;
memset(inq, , sizeof inq);
d[s] = ; inq[s] = ; p[s] = ; a[s] = INF; queue<int> Q;
Q.push(s);
while(!Q.empty()){
int u = Q.front(); Q.pop();
inq[u] = ;
for(int i = ; i < G[u].size(); i++){
Edge& e = edges[G[u][i]];
if(e.cap>e.flow&&d[e.to]>d[u]+e.cost){
d[e.to] = d[u]+e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u],e.cap-e.flow);
if(!inq[e.to]) {Q.push(e.to); inq[e.to] = ;}
}
}
}
if(d[t]==INF) return false;
flow += a[t];
cost += (long long)d[t]*(long long)a[t];
for(int u = t; u!=s; u = edges[p[u]].from){
edges[p[u]].flow+=a[t];
edges[p[u]^].flow-=a[t];
}
return true;
}
int MincostMaxflow(int s,int t,long long &cost){
int flow = ;
cost = ;
while(BellmanFord(s,t,flow,cost));
return flow;
}
};
int w[N];
int main()
{
int n, m, k;
while(scanf("%d%d%d",&n,&m,&k)==)
{
for(int i = ; i <= n; i++) scanf("%d",&w[i]); int s = , t = n+;
MCMF mcmf;
mcmf.init(t);
mcmf.AddEdge(s,,k,);
for(int i = ; i < t; i++){
mcmf.AddEdge(i,i+,INF,);
}
for(int i = ; i <=n; i++){
int u = i, v = min(t,i+m);
mcmf.AddEdge(u,v,,-w[i]);
}
LL cost;
mcmf.MincostMaxflow(s,t,cost);
printf("%lld\n",-cost);
}
return ;
}

hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙的更多相关文章

  1. poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙

    /** 题目:poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙 链接:http://poj.org/problem?id=3680 题意:给定n个区间,每个区间(ai,bi ...

  2. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  3. BZOJ1927: [Sdoi2010]星际竞速(最小费用最大流 最小路径覆盖)

    题意 题目链接 Sol 看完题不难想到最小路径覆盖,但是带权的咋做啊?qwqqq 首先冷静思考一下:最小路径覆盖 = \(n - \text{二分图最大匹配数}\) 为什么呢?首先最坏情况下是用\(n ...

  4. 55.Top K Frequent Elements(出现次数最多的k个元素)

    Level:   Medium 题目描述: Given a non-empty array of integers, return the k most frequent elements. Exam ...

  5. 2019HDU多校第三场 K subsequence——最小费用最大流

    题意 给定一个 $n$ 个整数的数列,从中至多选取 $k$ 个上升子序列(一个元素最多被选一次),使得选取的元素和最大. 分析 考虑这个问题和经典网络流问题“最长不下降子序列”相似,我们考虑对这个建图 ...

  6. 连续最短路算法(Successive Shortest Path)(最小费用最大流)

    #include <cstdio> #include <cstring> #include <queue> #include <vector> #inc ...

  7. POJ3680 Intervals —— 区间k覆盖问题(最小费用流)

    题目链接:https://vjudge.net/problem/POJ-3680 Intervals Time Limit: 5000MS   Memory Limit: 65536K Total S ...

  8. 位操作(求[a, b] 中二进制位为1的个数最多的数)

    传送门 题意:求区间[a, b]中二进制位为1的个数最多的那个数,如果存在多解,则输出最小的那个.(0 <= a <= b) 关键: 对一个数a可以利用 a | (a + 1) 来将a的二 ...

  9. hdu6003 Problem Buyer 贪心 给定n个区间,以及m个数,求从n个区间中任意选k个区间,满足m个数都能在k个区间中找到一个包含它的区间,如果一个区间包含了x,那么 该区间不能再去包含另一个数,即k>=m。求最小的k。如果不存在这样的k,输出“IMPOSSIBLE!”。

    /** 题目:hdu6003 Problem Buyer 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6003 题意:给定n个区间,以及m个数,求从n个区 ...

随机推荐

  1. Style对象之一

    <html> <style type="text/css"> body{ background-color="#FFCC80"; bac ...

  2. HDU 4554 叛逆的小明

    叛逆的小明 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Total Submiss ...

  3. 算法笔记_100:蓝桥杯练习 算法提高 三个整数的排序(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 输入三个数,比较其大小,并从大到小输出. 输入格式 一行三个整数. 输出格式 一行三个整数,从大到小排序. 样例输入 33 88 77 样 ...

  4. ubuntu 改动 ls 下的文件夹颜色

    ubuntu 下, ls 显示的文件夹的颜色,怎么说呢,看起来太费劲了. 于是想着改动成easy识别的颜色. 于是搜索了一下. 这里列举三个搜到的教程吧. 简单说我按这上面的方法做了,然后都失败了. ...

  5. 两名技术人员,历经8小时Piranha Games成功集成Xsolla

    w=580&h=304" alt="" width="580" height="304" style="max- ...

  6. struts2中 jsp:forward 失败原因及解决办法

    问题:在Struts2中<jsp:forward page="xxx.action"></jsp:forward>失效了,不但调转不过去还报404错误.不知 ...

  7. Javascript 判断网页横竖屏

    本篇文章由:http://xinpure.com/javascript-to-determine-page-anyway-screen/ Html5 流行至今,自适应的网站已经多如牛毛,但是横竖屏的切 ...

  8. 巧用FTP命令进行文件传输

    巧用FTP进行文件传输   Internet作为现代信息高速公路已深入我们的生活,其中它所提供的电子邮件Web网站信息服务已被越来越多的人所熟知和使用.FTP作为Internet的功能之一,虽然没有像 ...

  9. javascript解析器(引擎)

    The JavaScript interpreter in a browser is implemented as a single thread. javascript 引擎在浏览器中作为单线程实现 ...

  10. 一个官翻教程集合:ASP.NET Core 和 EF Core 系列教程

    通过一个大学课程案例讲解了复杂实体的创建过程及讲解 1.ASP.NET Core 和 Entity Framework Core 系列教程——入门 (1 / 10) 2.ASP.NET Core 和 ...