图像质量评价方法PSNR+SSIM&&评估指标SROCC,PLCC
update:2018-04-07
今天发现ssim的计算里面有高斯模糊,为了快速计算,先对每个小块进行计算,然后计算所有块的平均值。可以参考源代码实现,而且代码实现有近似的在里面!matlab中中图像PSNR和SSIM的计算
“在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用高斯加权计算每一窗口的均值、方差以及协方差,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性MSSIM”
function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L)
C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
window = window/sum(sum(window));
img1 = double(img1);
img2 = double(img2); mu1 = filter2(window, img1, 'valid');
mu2 = filter2(window, img2, 'valid');
mu1_sq = mu1.*mu1;
mu2_sq = mu2.*mu2;
mu1_mu2 = mu1.*mu2;
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; if (C1 > 0 & C2 > 0)
ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
numerator1 = 2*mu1_mu2 + C1;
numerator2 = 2*sigma12 + C2;
denominator1 = mu1_sq + mu2_sq + C1;
denominator2 = sigma1_sq + sigma2_sq + C2;
ssim_map = ones(size(mu1));
index = (denominator1.*denominator2 > 0);
ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
index = (denominator1 ~= 0) & (denominator2 == 0);
ssim_map(index) = numerator1(index)./denominator1(index);
end mssim = mean2(ssim_map); return
1.PSNR,峰值信噪比
通常用来评价一幅图像压缩后和原图像相比质量的好坏,当然,压缩后图像一定会比原图像质量差的,所以就用这样一个评价指标来规定标准了。PSNR越高,压缩后失真越小。这里主要定义了两个值,一个是均方差MSE,另一个是峰值信噪比PSNR,公式如下:
这里的MAX通常是图像的灰度级,一般就是255了。
close all;
clear all;
clc; img=imread('lena.jpg');
[h w]=size(img);
imgn=imresize(img,[floor(h/2) floor(w/2)]);
imgn=imresize(imgn,[h w]);
img=double(img);
imgn=double(imgn); B=8; %编码一个像素用多少二进制位
MAX=2^B-1; %图像有多少灰度级
MES=sum(sum((img-imgn).^2))/(h*w); %均方差
PSNR=20*log10(MAX/sqrt(MES)); %峰值信噪比
原图
图像宽高分别缩小1/2再放大到原图,PSNR=30.2dB
图像宽高分别缩小1/5再放大到原图,PSNR=24.5dB
可以看出PSNR越高,图像和原图越接近。当然,这都是客观指标,实际评价还有主观指标,不过主观的东西就比较模糊了,每个人感觉都会不同的。最常用的全参考视频质量评价方法有以下2种:
PSNR(峰值信噪比):用得最多,但是其值不能很好地反映人眼主观感受。一般取值范围:20-40.值越大,视频质量越好。
SSIM(结构相似性):计算稍复杂,其值可以较好地反映人眼主观感受。一般取值范围:0-1.值越大,视频质量越好。
PSNR,SSIM计算有如下工具可选:
MSU Video Quality Measurement Tool:商业软件,图形化界面,易上手,使用有限制。
Evalvid中的psnr.exe:开源软件,命令行界面,使用无限制。推荐,适合批处理。
- 偶然发现了一个很好的网站。里面包含了大量主观评价算法的数据,导入到Matlab中就可以使用。http://sse.tongji.edu.cn/linzhang/IQA/IQA.htm
注:MOS(Mean Opnion Score,平均意见分)是主观评价实验之后,得到的主观分数,取值0-100,值越大,代表主观感受越好。以下实验数据来自Live数据库:http://live.ece.utexas.edu/research/Quality/
实际使用时,简化起见,一般会将参数设为及
,得到:
在计算两张影像的结构相似性指标时,会开一个局部性的视窗,一般为×
的小区块,计算出视窗内信号的结构相似性指标,每次以像素为单位移动视窗,直到整张影像每个位置的局部结构相似性指标都计算完毕。将全部的局部结构相似性指标平均起来即为两张影像的结构相似性指标。
- 在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用高斯加权计算每一窗口的均值、方差以及协方差,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性MSSIM:
opencv和matlab都有现成的函数可以使用。
参考:图像质量评价--SSIM
图像质量评价指标
- update 2018-07-0716:50:16
- 均方误差(MSE)和均方根误差(RMSE)和平均绝对误差(MAE)
MSE: Mean Squared Error
均方误差是指参数估计值与参数真值之差平方的期望值;
MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度。
RMSE
均方误差:均方根误差是均方误差的算术平方根
MAE :Mean Absolute Error
平均绝对误差是绝对误差的平均值
平均绝对误差能更好地反映预测值误差的实际情况.
SD :standard Deviation
标准差:标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组组数据,标准差未必相同。
SROCC被认为是最好的非线性相关指标,这是因为,SROCC只与序列中元素的排序有关。因此即使X或Y被任何单调非线性变换作用(如对数变换、指数变换),都不会对SROCC造成任何影响,因为不会影响元素的排序。维基百科有一张很直观的图片,很好地体现了SROCC与PLCC的区别。


KROCC = (同序对数-逆序对数) / 总对数 (总对数=n(n - 1)/2)它的性质与SROCC类似,但是比较抖。对于连续输出的机器学习模型或简单的回归拟合,发Paper的话,一般要放SROCC和PLCC,这两个标准是最重要的,可以很好地衡量模型的非线性相关性和线性相关性。偶尔也会放KROCC和RMSE(方均根误差)。但是SROCC是比PLCC更为根本的指标,因为一个复杂模型总可以用一些附加的非线性变换(对数或者指数,还有某些领域内recommanded复杂的组合= =)来补正,使得PLCC更高一些,而SROCC却不能被这些附加非线性变换来影响。
图像质量评价方法PSNR+SSIM&&评估指标SROCC,PLCC的更多相关文章
- opencv-9-图像噪声以及评估指标 PSNR 与SSIM
开始之前 我们在将 opencv 的图像显示在了 qt 的label 上, 我们能够将图显示在label 上, 用于显示我们的算法, 我们在 opencv 上一篇文章中介绍了 opencv 的核操作, ...
- 全参考视频质量评价方法(PSNR,SSIM)以及与MOS转换模型
转载处:http://blog.csdn.NET/leixiaohua1020/article/details/11694369 最常用的全参考视频质量评价方法有以下2种: PSNR(峰值信噪比):用 ...
- 你的GAN训练得如何--GAN 的召回率(多样性)和精确率(图像质量)方法评估
生成对抗网络(GAN)是当今最流行的图像生成方法之一,但评估和比较 GAN 产生的图像却极具挑战性.之前许多针对 GAN 合成图像的研究都只用了主观视觉评估,一些定量标准直到最近才开始出现.本文认为现 ...
- 图像质量评价-NQM和WPSNR
王保全. 基于混合专家模型的快速图像超分辨率方法研究与实现[D]. 2015. PSNR 和SSIM 在有时候并不能很确切的表示图像质量 标准,该论文中根据一定量的人为的感知评分作为参考,用斯皮尔曼等 ...
- 评估指标:准确率(Precision)、召回率(Recall)以及F值(F-Measure)
为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化. 由于IR的目标是在较短时间 ...
- [DeeplearningAI笔记]ML strategy_1_1正交化/单一数字评估指标
机器学习策略 ML strategy 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 什么是ML策略 机器学习策略简介 情景模拟 假设你正在训练一个分类器,你的系统已经达到了90%准确 ...
- Python机器学习笔记:常用评估指标的用法
在机器学习中,性能指标(Metrics)是衡量一个模型好坏的关键,通过衡量模型输出y_predict和y_true之间的某种“距离”得出的. 对学习器的泛化性能进行评估,不仅需要有效可行的试验估计方法 ...
- python实现六大分群质量评估指标(兰德系数、互信息、轮廓系数)
python实现六大分群质量评估指标(兰德系数.互信息.轮廓系数) 1 R语言中的分群质量--轮廓系数 因为先前惯用R语言,那么来看看R语言中的分群质量评估,节选自笔记︱多种常见聚类模型以及分群质量评 ...
- 自动文档摘要评价方法:Edmundson,ROUGE
自动文档摘要评价方法大致分为两类: (1)内部评价方法(Intrinsic Methods):提供参考摘要,以参考摘要为基准评价系统摘要的质量.系统摘要与参考摘要越吻合, 质量越高. (2)外部评价方 ...
随机推荐
- httpput
String doHttpPut(String rpmName, String cookie) throws UnsupportedEncodingException, IOException, Cl ...
- boost安装缺少libboost_iostreams.so
编译安装boost库: 1 ./bootstrap.sh 2 ./bjam 3 ./b2 install 但安装boosth后,发现缺少libboost_iostreams.so库,后发现boost库 ...
- java.util.Stack类中的peek()方法
java.util.stack类中常用的几个方法:isEmpty(),add(),remove(),contains()等各种方法都不难,但需要注意的是peek()这个方法. peek()查看栈顶的对 ...
- tensorflow/pytorch/mxnet的pip安装,非源代码编译,基于cuda10/cudnn7.4.1/ubuntu18.04.md
os安装 目前对tensorflow和cuda支持最好的是ubuntu的18.04 ,16.04这种lts,推荐使用18.04版本.非lts的版本一般不推荐. Windows倒是也能用来装深度GPU环 ...
- 《Spring_Four》第三次作业——基于Jsoup的大学生考试信息展示系统的原型设计与开发
<Spring_Four团队>第三次团队项目——基于Jsoup的大学生考试信息展示系统的原型设计与开发 一.实验目的与要求 (1)掌握软件原型开发技术: (2)学习使用软件原型开发工具:本 ...
- python下划线的5种含义
本文介绍了Python中单下划线和双下划线("dunder")的各种含义和命名约定,名称修饰(name mangling)的工作原理,以及它如何影响你自己的Python类. 单下划 ...
- nginx实现http www服务的方式
- pipeline-安全测试
代码安全检查 需要安装SonarQube(版本6.7,安装了Findbugs插件) MySQL >=5.6,笔者安装的是MySQL 5.7版本 Jenkins需要安装下列插件: SonarQub ...
- 348. Design Tic-Tac-Toe设计井字游戏
[抄题]: Design a Tic-tac-toe game that is played between two players on a n x n grid. You may assume t ...
- [leetcode]2. Add Two Numbers两数相加
You are given two non-empty linked lists representing two non-negative integers. The digits are stor ...