【SDOI 2017】龙与地下城(组合)
概率论太难了,不会。但这不能阻止我们过题。
相信大家都会一个基于背包的暴力做法,我们可以将其看成是卷积的形式就可以用fft优化了。形式化讲,就是求幂级数$ (\sum\limits_{i = 0}^{x - 1} \frac{1}{x} z^i)^y $在$[z^A, z^B]$之间的系数和。
不在模意义下的做法
直接将上述幂级数暴力倍增卷积求出来复杂度是$O(x*y*log(xy))$,不太能过的。但如果不在模意义下做我们就可以尝试爆精度爆过去。很容易发现最后求得的点数和很大概率就是在均值附近的,过大过小的概率几乎为0。也就是我们中间在做卷积和有很多项几乎为0,我们把他们忽略掉是在精度的承受范围之内的。于是我们在做倍增求出上述幂级数的时候我们可以每次只保留中间的一小段有值的部分,其余的扔掉就行了。也就是说我们设定一个阈值$\epsilon$,每次卷积后把多项式中值$\le \epsilon$的都扔掉。这样复杂度就是$O(len*log(len + y))$,其中$len$是最终幂级数中值$> \epsilon$的个数。实践证明,当$\epsilon$取$10^{-9}$时,$len$大概是两三万,并且此时的精度可以达到小数点后4位。
在模意义下的做法
如果答案可以对某个质数取模,这题就更好做了。
考虑最开始的那个幂级数:
$(\sum\limits_{i = 0}^{x - 1} \frac{1}{x} z^i)^y = (\frac{1}{x} \frac{1 - z^x}{1 - z})^y = (\frac{1}{x})^y (1 - z^x)^y(\frac{1}{1 - z})^y$
我们想要求其在第$[A, B]$之间的系数和,我们可以乘上一个$\frac{1}{1 - x}$来做一次前缀和,这样我们可以转化成两次形如求一个$z^n$的系数的问题。也就是:
$[z^n] (\frac{1}{x})^y (1 - z^x)^y(\frac{1}{1 - z})^{y + 1}$
手动展开后面的两个:
$=[z^n] (\frac{1}{x})^y(\sum\limits_{i = 0}^{y}\binom{y}{i}(-1)^iz^{ix})(\sum\limits_{i = 0}\binom{y + i}{y}z^i)$
$=(\frac{1}{x})^y\sum\limits_{i = 0}^{y}\binom{y}{i}(-1)^i\binom{y + n - ix}{y}$
预处理组和数之后随便做一下就好了,复杂度$O(x*y)$。
$\bigodot$套路与技巧:
- 隔板法用于展开形如$(\frac{1}{1 - z})^y$的幂级数。
做法一:
#include <bits/stdc++.h>
using namespace std;
namespace PO {
const int N = 4e5 + ;
const double PI = acos(-);
struct Com {
double x, y;
friend Com operator + (Com a, Com b) {
return (Com){ a.x + b.x, a.y + b.y };
}
friend Com operator - (Com a, Com b) {
return (Com){ a.x - b.x, a.y - b.y };
}
friend Com operator * (Com a, Com b) {
return (Com){ a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x };
}
} ta[N], tb[N], w[N];
int rev[N], L = ;
typedef vector<Com> Poly;
void Init(int l) {
for (; L < l; L <<= ) {
for (int i = L; i < (L << ); ++i) {
w[i] = (Com){ cos(PI / L * (i - L)), sin(PI / L * (i - L)) };
}
}
for (int i = ; i < l; ++i) {
rev[i] = (rev[i >> ] >> ) | (i & ? l >> : );
}
}
void Dft(Com *a, int l) {
for (int i = ; i < l; ++i)
if (i < rev[i]) swap(a[i], a[rev[i]]);
for (int i = ; i < l; i <<= ) {
for (int j = ; j < l; j += i << ) {
Com *l = a + j, *r = l + i, *wx = w + i, y;
for (int k = ; k < i; ++k, ++l, ++r, ++wx) {
y = (*r) * (*wx);
*r = (*l) - y;
*l = (*l) + y;
}
}
}
}
void Idft(Com *a, int l) {
reverse(a + , a + l);
Dft(a, l);
for (int i = ; i < l; ++i) {
a[i].x /= l;
a[i].y /= l;
}
}
vector<double> Mul(vector<double> a, vector<double> b) {
int n = a.size(), m = b.size(), l;
for (l = ; l < n + m - ; l <<= );
Init(l);
a.resize(l), b.resize(l);
for (int i = ; i < l; ++i) {
ta[i] = (Com){ a[i], };
tb[i] = (Com){ b[i], };
}
Dft(ta, l), Dft(tb, l);
for (int i = ; i < l; ++i) {
ta[i] = ta[i] * tb[i];
}
Idft(ta, l);
for (int i = ; i < l; ++i) {
a[i] = ta[i].x;
}
a.resize(n + m - );
return a;
}
}
void Cut(vector<double> &a, int &base) {
const double GAMA = 1e-;
int id = ;
while (a[id] < GAMA) ++id;
for (int i = ; i + id < a.size(); ++i) {
a[i] = a[i + id];
}
while (a.back() < GAMA) {
a.pop_back();
}
base += id;
}
int main() {
int tc;
for (cin >> tc; tc--; ) {
int x, y;
cin >> x >> y;
vector<double> ans(x * y);
vector<double> F(x, 1.0 / x), G(, );
int base_f = , base_g = ;
for (int ex = y; ex; ex >>= ) {
if (ex & ) {
G = PO::Mul(G, F);
base_g += base_f;
Cut(G, base_g);
}
F = PO::Mul(F, F);
base_f *= ;
Cut(F, base_f);
}
for (int i = ; i < G.size(); ++i) {
ans[i + base_g] = G[i];
}
for (int i = ; i < x * y; ++i) {
ans[i] += ans[i - ];
}
for (int cas = ; cas--; ) {
int l, r;
cin >> l >> r;
printf("%.12f\n", ans[r] - (l? ans[l - ] : ));
}
}
return ;
}
【SDOI 2017】龙与地下城(组合)的更多相关文章
- SDOI 2017 Day1
日期:2017-04-10 题解: 第一题: 题目大意:求fi(gcd(i,j))的乘积 i,j属于[1,1e6],数据组数1000组. 类别:套路题. 第二题:BZOJ原题. 题解:LCT套线段树 ...
- [SDOI 2017]新生舞会
Description 题库链接 给你个 \(2\times N\) 的带权二分图,两个权值 \(a,b\) ,让你做匹配使得 \[\frac{\sum a}{\sum b}\] 最大. \(1\le ...
- [SDOI 2017]数字表格
Description 题库链接 记 \(f_i\) 为 \(fibonacci\) 数列的第 \(i\) 项. 求 \[\prod_{i=1}^n\prod_{j=1}^mf_{gcd(i,j)}\ ...
- [BZOJ 4817] [SDOI 2017] 树点涂色
Description Bob有一棵 \(n\) 个点的有根树,其中 \(1\) 号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同. 定义一条路径的权值是:这条路径上的点(包括起点和终点 ...
- [BZOJ 4819] [SDOI 2017] 新生舞会
Description 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴. 有 \(n\) 个男生和 \(n\) 个女生参加舞会买一个男生和一个女生一起跳舞,互为舞伴. C ...
- [BZOJ 4818] [SDOI 2017] 序列计数
Description Alice想要得到一个长度为 \(n\) 的序列,序列中的数都是不超过 \(m\) 的正整数,而且这 \(n\) 个数的和是 \(p\) 的倍数. Alice还希望,这 \(n ...
- 解题:SDOI 2017 硬币游戏
题面 板板的生成函数做法太神仙了,我跑了 朴素的做法是建立AC自动机变成图上的随机游走问题 来仔细考虑一下转移,把状态分成非结尾状态和结尾状态.在一个非结尾状态后补一个串是一定能到达目标串的,但是如果 ...
- BZOJ.4909.[SDOI2017]龙与地下城(正态分布 中心极限定理 FFT Simpson积分)
BZOJ 洛谷 https://www.luogu.org/blog/ShadowassIIXVIIIIV/solution-p3779# 正态分布 正态分布是随机变量\(X\)的一种概率分布形式.它 ...
- SDOI 2017 天才黑客
/* 根据claris的 博客以及 beginend 的博客来写的 首先考虑如何求出最短路 可以从样例看出 路径是从边走到边的, 所以我们将边看作点 有共同端点的两边之间 互相连边, 边权为lcp. ...
随机推荐
- Ionic app升级插件开发
终于走到了写插件的这个地方了,插件的过程: 1.安装plugman插件,管理我们的程序 npm install -g plugman 2.创建插件项目appUpgrade,cd 到你的目标目录下,执行 ...
- 微信小程序之wx.request:fail错误,真机预览请求无效问题解决,安卓,ios网络预览异常
新版开发者工具增加了https检查功能:可使用此功能直接检查排查ssl协议版本问题: 可能原因:0:后台域名没有配置0.1:域名不支持https1:没有重启工具:2:域名没有备案,或是备案后不足24小 ...
- MySQL高可用架构-MHA环境部署记录
一.MHA介绍 MHA(Master High Availability)目前在MySQL高可用方面是一个相对成熟的解决方案,它由日本DeNA公司youshimaton(现就职于Facebook公司) ...
- SQL多表查询总结
前言 连接查询包括合并.内连接.外连接和交叉连接,如果涉及多表查询,了解这些连接的特点很重要.只有真正了解它们之间的区别,才能正确使用. 一.Union UNION 操作符用于合并两个或多个 SELE ...
- BugPhobia团队篇章:团队管理与Github源代码管理说明
0x00:序言 To the searching tags, you may well fall in love withhttp://xueba.nlsde.buaa.edu.cn/ 再见,无忧时光 ...
- 第三个spring冲刺第3天
基本功能跟界面都完成了,今天小组开了个会,基于跟别的小组对比的效果,感觉自己组的效果没别人的好,很多方面还欠缺,所以我们会继续跟进完善.
- 2017BUAA软工个人作业Week1
大概的功能已经满足 暂时只能用debug中的exe文件 正在改进... https://github.com/qwellk/project1/tree/product1 PSP2.1 Personal ...
- hive数据导入load导入命令
LOCAL 指的是操作系统的文件路径,否则默认为HDFS的文件路径 1.向t2和t3的数据表中导入数据 2.导入操作系统的一下三个文件 执行导入命令 3.将HDFS文件中的数据导入到t3中 4.导入 ...
- React learn path
React learn path The Road to learn React https://github.com/the-road-to-learn-react https://roadtore ...
- [Caffe]:关于*** Aborted at 1479432790 (unix time) try "date -d @1479432790" 错误的另一种原因
问题:设置solver.prototxt时,lr_policy:"step",运行时出现下面问题 *** Aborted at (unix time) try "date ...