Attention[Content]
0. 引言
神经网络中的注意机制就是参考人类的视觉注意机制原理。即人眼在聚焦视野区域中某个小区域时,会投入更多的注意力到这个区域,即以“高分辨率”聚焦于图像的某个区域,同时以“低分辨率”感知周围图像,然后随着时间的推移调整焦点。
参考文献:
- [arxiv] - .attention search
- [CV] - Mnih V, Heess N, Graves A. Recurrent models of visual attention[J]. arXiv preprint arXiv:1406.6247, 2014.
- [Bahdanau] - Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014.
- [CV] - Ba J, Mnih V, Kavukcuoglu K. Multiple object recognition with visual attention[J]. arXiv preprint arXiv:1412.7755, 2014.
- [CV] - Xu K, Ba J, Kiros R, et al. Show, attend and tell: Neural image caption generation with visual attention[J] .arXiv preprint arXiv:1502.03044, 2015.
- [Speech] - Chorowski J K, Bahdanau D, Serdyuk D, et al. Attention-based models for speech recognition[J]. arXiv preprint arXiv:1506.07503, 2015.
- [Luong ] - Luong M T, Pham H, Manning C D. Effective approaches to attention-based neural machine translation[J]. arXiv preprint arXiv:1508.04025, 2015.
- [Speech] - Bahdanau D, Chorowski J, Serdyuk D, et al. End-to-end attention-based large vocabulary speech recognition[J]. arXiv preprint arXiv:1508.04395, 2015.
- [QA] - Yang Z, He X, Gao J, et al. Stacked attention networks for image question answering[J]. arXiv preprint arXiv:1511.02274, 2015.
- [Weight normalization] - Salimans T, Kingma D P. Weight normalization: A simple reparameterization to accelerate training of deep neural networks[J]. arXiv preprint arXiv:1602.07868, 2016.
- [Text] - Nallapati R, Xiang B, Zhou B. Sequence-to-Sequence RNNs for Text Summarization[J]. 2016.
- [Survey] - Wang F, Tax D M J. Survey on the attention based RNN model and its applications in computer vision[J]. arXiv preprint arXiv:1601.06823, 2016.
- [Translation] - Wu Y, Schuster M, Chen Z, et al. Google's neural machine translation system: Bridging the gap between human and machine translation[J]. arXiv preprint arXiv:1609.08144, 2016.
- [Translation] - Neubig G. Neural Machine Translation and Sequence-to-sequence Models: A Tutorial[J]. arXiv preprint arXiv:1703.01619, 2017.
- [BahdanauMonotonic] - Raffel C, Luong T, Liu P J, et al. Online and linear-time attention by enforcing monotonic alignments[J]. arXiv preprint arXiv:1704.00784, 2017.
- [survey] - .Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need[J].arXiv preprint arXiv:1706.03762v4, 2017.
- [Blog] - .Attention and Augmented Recurrent Neural Networks
- [Quora] - .How-does-an-attention-mechanism-work-in-deep-learning
- [Quora] - .Can-you-recommend-to-me-an-exhaustive-reading-list-for-attention-models-in-deep-learning
- [Quora] - .What-is-attention-in-the-context-of-deep-learning
- [Quora] - .What-is-an-intuitive-explanation-for-how-attention-works-in-deep-learning
- [Quora] - .What-is-exactly-the-attention-mechanism-introduced-to-RNN-recurrent-neural-network-It-would-be-nice-if-you-could-make-it-easy-to-understand
- [Quora] - .How-is-a-saliency-map-generated-when-training-recurrent-neural-networks-with-soft-attention
- [Quora] - .What-is-the-difference-between-soft-attention-and-hard-attention-in-neural-networks
- [Quora] - .What-is-Attention-Mechanism-in-Neural-Networks
- [Quora] - .How-is-the-attention-component-of-attentional-neural-networks-trained
Attention[Content]的更多相关文章
- Attention and Augmented Recurrent Neural Networks
Attention and Augmented Recurrent Neural Networks CHRIS OLAHGoogle Brain SHAN CARTERGoogle Brain Sep ...
- The 4 Essentials of Video Content Marketing Success
https://www.entrepreneur.com/article/243208 As videos become increasingly popular, they provide the ...
- A Model of Saliency-Based Visual Attention for Rapid Scene Analysis
A Model of Saliency-Based Visual Attention for Rapid Scene Analysis 题目:A Model of Saliency-Based Vis ...
- 《Attention is All You Need》
https://www.jianshu.com/p/25fc600de9fb 谷歌最近的一篇BERT取得了卓越的效果,为了研究BERT的论文,我先找出了<Attention is All You ...
- (zhuan) Attention in Long Short-Term Memory Recurrent Neural Networks
Attention in Long Short-Term Memory Recurrent Neural Networks by Jason Brownlee on June 30, 2017 in ...
- The Attention Merchants
Title: The Attention Merchants (书评类文章) <注意力商人> attention 注意力 merchant 商人(零售商,强调通过贩卖物品获取利益) bu ...
- content is king – Bill Gates (1/3/1996) 内容为王 - 比尔盖茨
以下中文版本由谷歌翻译 内容为王 - 比尔盖茨(1/3/1996) 内容是我期望在互联网上赚取大部分真钱的地方,就像在广播中一样. 半个世纪前开始的电视革命催生了许多行业,包括制造电视机,但长期的赢家 ...
- considerate|considerable|content|Contact|Consult|deceived|
ADJ-GRADED 替人着想的;体贴的Someone who is considerate pays attention to the needs, wishes, or feelings of o ...
- 谣言检测(ClaHi-GAT)《Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks》
论文信息 论文标题:Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks论文作者:Erx ...
随机推荐
- HappenBefore
计算机芯片在操作指令的步骤: 1.获取指令 2.指令进行解码 3.去寄存器里取值 4.开始计算结果(操作) 5.将结果写会到寄存器中 执行代码的顺序可能与编写代码不一致,及虚拟机优化代码顺序,则为指令 ...
- 基于bootstrap的双日历插件 daterangepicker
我遇到需求是要求我将daterangepicker的一个双日期选择格式修改成两个单日期格式的日期选择框(方便手机端显示),要求如下: 1.两个单日期格式分别为开始日期和结束日期 2.开始日期可选择范围 ...
- Expo大作战(三十六)--expo sdk api之 ImagePicker,ImageManipulator,Camera
简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,讲全部来与官网 我猜去全部机翻+个人 ...
- 《R数据挖掘入门》彩色插图(第9章)
图9.5 图9.9
- shell脚本之颜色效果显示以及PS1颜色实战
在bash shell脚本中我们可以使用ASCII颜色来显示文本信息. 格式:\033\[31m hello \033[0m ##m: 左侧#:这个#可以是3或者4,作用不一样. 3:前景色 4:背景 ...
- 5.3Python函数(三)
目录 目录 前言 (一)装饰器 ==1.简单的装饰器== ==2.修饰带参数函数的装饰器== ==3.修饰带返回值函数的装饰器== ==4.自身带参数的装饰器== (二)迭代器 (三)生成器 ==1. ...
- python学习-判断是否是IP地址
1.使用正则表达式 首先分析IP地址的组成,十进制的合法IP地址由32位数字组成 使用.分割开 每个分组可出现的情况: 第一个分组: 1-9:一位数字 10-99:两位数字 100-199:三位数字且 ...
- React路由 + 绝对路径引用
路由: 哈希路由(在url地址后加 #name) // 实现页面监听 window.onhashchange = function(){ console.log(‘hash:’,window.lo ...
- 学生与部门管理app-产品功能与界面的简单设计
学生与部门管理app-产品功能与界面的简单设计 1. 结对成员学号 我:********* 大佬:*******10 2. 需求分析(NABCD模型) 2.1 N-需求 各个部门在开学初占据学校青春广 ...
- DataUtils对Connection的获取、释放和关闭的操作学习
DataSourceUitls介绍 DataSourceUitls类位于org.springframework.jdbc.datasource包下,提供了很多的静态方法去从一个javax.sql.Da ...