原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=5748

树状数组:

/*
对于普通的LIS:
for(i):1~n LIS[i]=1;
if j<i and a[j]<a[i]
LIS[i]=LIS[j]+1
因此可知LIS转移需要两个条件
1.(j<i) 序号必须在i之前
2.(a[i]>a[j]) 值必须比a[i]小
利用树状数组的顺序操作:{查找的都是已经出现的,序号在前(满足条件1)}
对于每一个值,查找它在数组中的排名,再去寻找小于它的排名的最大的LIS(满足条件2)
这里利用到了排名,因为这样可以最大限度地压缩C数组的空间
*/
#include <bits/stdc++.h>
using namespace std;
const int Max=1e5+;
int A[Max],V[Max],L[Max],C[Max],len;
int lowbit(int x) {return x&(-x);}
int Sum(int x) //求值小于等于x的LIS的最大值
{
int ret=;
while(x>)
{
if(C[x]>ret) ret=C[x];
x-=lowbit(x);
}
return ret;
}
void Add(int x,int d) //值大于等于x的LIS都改为LIS(x)
{
while(x<=len)
{
if(d>C[x]) C[x]=d;
x+=lowbit(x);
}
}
int main()
{
int T;
for(scanf("%d",&T);T;T--)
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&A[i]);
V[i]=A[i];
}
sort(V+,V++n);
len=unique(V+,V++n)-(V+);
memset(C,,sizeof(C));
int ans=,tmp,xu;
for(int i=;i<=n;i++)
{
xu=lower_bound(V+,V++len,A[i])-(V);
tmp=Sum(xu-)+;
L[i]=tmp;
Add(xu,tmp);
}
for(int i=;i<=n;i++)
{
if(i!=) printf(" ");
printf("%d",L[i]);
}
puts("");
}
return ;
}

dp+二分

/*
以dp[x]代表长度为x的LIS,且dp[x]==LIS长度为x的末尾值
每次都往前取dp[x]中最小的一个,当然在保证x尽可能地大的情况下
因为dp[x]是递增的,所以可以二分,l=1,r=当前最长的LIS
求得当前以小于当前a[i]的最长LIS
*/
#include <bits/stdc++.h>
using namespace std;
const int Max=1e5+;
int A[Max];
int dp[Max];
int LIS[Max];
void Get_lis(int n)
{
int i,j,l,r,mid,ans;
dp[]=A[];
int len=;
for(i=;i<=n;i++)
{
if(dp[len]<A[i]) j=++len;
else
{
l=;r=len;
ans=;
while(l<=r)
{
mid=(l+r)>>;
if(A[i]>dp[mid]&&A[i]<=dp[mid+])
{
ans=mid;break;
}
else if(A[i]>dp[mid]) l=mid+;
else r=mid-;
}
j=ans+;
}
dp[j]=A[i];
LIS[i]=j;
}
}
int main()
{
int T;
for(scanf("%d",&T);T;T--)
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&A[i]);
dp[i]=;
}
LIS[]=;
Get_lis(n);
for(int i=;i<=n;i++)
{
if(i!=) printf(" ");
printf("%d",LIS[i]);
}
puts("");
}
return ;
}

其实还有一种单调队列求最长上升子序列的方法,可是不能用来解这道题

/*
无解。。。
单调队列只能求出总体的LIS长度
*/
#include <bits/stdc++.h>
using namespace std;
const int Max=1e5+;
int que[Max];
int main()
{
int T;
for(scanf("%d",&T);T;T--)
{
int n,x,top=;
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d",&x);
if(x>que[top]||top==)
{
que[++top]=x;
}
else
{
int l=,r=top,mid,ans;
ans=;
while(l<=r)
{
mid=l+(r-l)/;
if(que[mid]<x) l=mid+;
else r=mid-,ans=mid;
}
que[ans]=x;
}
}
cout<<top<<endl;
}
return ;
}

hdu 5748(求解最长上升子序列的两种O(nlogn)姿势)的更多相关文章

  1. 求解最长递增子序列(LIS) | 动态规划(DP)+ 二分法

    1.题目描述     给定数组arr,返回arr的最长递增子序列. 2.举例     arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答      ...

  2. HDU 4681 String 最长公共子序列

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4681 题意: 给你a,b,c三个串,构造一个d串使得d是a,b的子序列,并且c是d的连续子串.求d最大 ...

  3. hdu 1025 dp 最长上升子序列

    //Accepted 4372 KB 140 ms //dp 最长上升子序列 nlogn #include <cstdio> #include <cstring> #inclu ...

  4. hdu 5489(LIS最长上升子序列)

    题意:一个含有n个元素的数组,删去k个连续数后,最长上升子序列        /*思路参考GoZy 思路: 4 2 3 [5 7 8] 9 11 ,括号表示要删掉的数, 所以  最长上升子序列  = ...

  5. hdu 5532(最长上升子序列)

    Input The first line contains an integer T indicating the total number of test cases. Each test case ...

  6. Python动态规划求解最长递增子序列(LIS)

    原始代码错误,移步博客查看O(N^2)及优化的O(N*logN)的实现:每天一道编程题--最长递增子序列

  7. 算法练习--- DP 求解最长上升子序列(LIS)

    问题描写叙述: 对于2,5,3,1,9,4,6,8,7,找出最长上升子序列的个数 最长上升子序列定义: 对于i<j i,j∈a[0...n] 满足a[i]<a[j] 1. 找出DP公式:d ...

  8. HDU 1159.Common Subsequence-最长公共子序列(LCS)

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  9. 最长上升子序列算法(n^2 及 nlogn) (LIS) POJ2533Longest Ordered Subsequence

    问题描述: 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列 ...

随机推荐

  1. org.springframework.web.HttpRequestMethodNotSupportedException: Request method 'PUT' not supported

    1:先上控制台报错信息 org.springframework.web.HttpRequestMethodNotSupportedException: Request method 'PUT' not ...

  2. UnixBench测试

    安装: 1. UnixBench from version 5.1 on has both system and graphics tests.    If you want to use the g ...

  3. CSS 块状元素和内联元素的详解

    我们先来分析一下块级元素.内联级元素的定义和解析:  块元素(block element)一般是其他元素的容器元素,块元素一般都从新行开始,它可以容纳内联元素和其他块元素,常见块元素是段落标签'P&q ...

  4. vagrant系列教程(三):vagrant搭建的php7环境(转)

    原文:http://blog.csdn.net/hel12he/article/details/51107236 前面已经把vagrant的基础知识已经基本过了一遍 了,相信只要按着教程来,你已经搭建 ...

  5. mysql 更改自动增长字段值的重新设定

    今天在服务器上MYSQL库里的一个表插入数据,主键id是auto_increment自动增长类型的.发现插入的值从2247734开始,而实际上id的最大值才22722,不明原因. 删除了新增的,opt ...

  6. 查看真机的APP沙盒文件

    1.Xcode --> window --> devices -->左边选择设备 右下边选择要查看的app 双击应用可查看目录 点击设置按钮,选 Download Container ...

  7. iOS崩溃日志记录工具--CrashlyTics

    http://try.crashlytics.com Crashlytics优势: 1.Crashlytics基本不会漏掉任何应用崩溃的信息 2.Crashlytics对崩溃日志管理很人性化,会根据崩 ...

  8. Factstone Benchmark

    [问题描述] Amtel已经宣布,到2010年,它将发行128位计算机芯片:到2020年,它将发行256位计算机:等等,Amtel坚持每持续十年将其字大小翻一番的战略.(Amtel于2000年发行了6 ...

  9. MYSQL服务器字符集设置

    修改默认字符集 vi /etc/my.cnf 在[mysqld]下面加入default-character-set=utf8 在[client]下面加入default-character-set=ut ...

  10. redis与memcached比较

    引用自:http://blog.csdn.net/e_wsq/article/details/23551799 最近需要用no-sql数据库来保存大量的数据,插入和查询都比较频繁,相对而言查询更加频繁 ...