Codeforces 46D Parking Lot
2 seconds
256 megabytes
standard input
standard output
Nowadays it is becoming increasingly difficult to park a car in cities successfully. Let's imagine a segment of a street as long as L meters along which a parking lot is located. Drivers should park their cars strictly parallel to the pavement on the right side of the street (remember that in the country the authors of the tasks come from the driving is right side!). Every driver when parking wants to leave for themselves some extra space to move their car freely, that's why a driver is looking for a place where the distance between his car and the one behind his will be no less than b meters and the distance between his car and the one in front of his will be no less than f meters (if there's no car behind then the car can be parked at the parking lot segment edge; the same is true for the case when there're no cars parked in front of the car). Let's introduce an axis of coordinates along the pavement. Let the parking lot begin at point 0 and end at point L. The drivers drive in the direction of the coordinates' increasing and look for the earliest place (with the smallest possible coordinate) where they can park the car. In case there's no such place, the driver drives on searching for his perfect peaceful haven. Sometimes some cars leave the street and free some space for parking. Considering that there never are two moving cars on a street at a time write a program that can use the data on the drivers, entering the street hoping to park there and the drivers leaving it, to model the process and determine a parking lot space for each car.
The first line contains three integers L, b и f (10 ≤ L ≤ 100000, 1 ≤ b, f ≤ 100). The second line contains an integer n (1 ≤ n ≤ 100) that indicates the number of requests the program has got. Every request is described on a single line and is given by two numbers. The first number represents the request type. If the request type is equal to 1, then in that case the second number indicates the length of a car (in meters) that enters the street looking for a place to park. And if the request type is equal to 2, then the second number identifies the number of such a request (starting with 1) that the car whose arrival to the parking lot was described by a request with this number, leaves the parking lot. It is guaranteed that that car was parked at the moment the request of the 2 type was made. The lengths of cars are integers from 1 to 1000.
For every request of the 1 type print number -1 on the single line if the corresponding car couldn't find place to park along the street. Otherwise, print a single number equal to the distance between the back of the car in its parked position and the beginning of the parking lot zone.
30 1 2
6
1 5
1 4
1 5
2 2
1 5
1 4
0
6
11
17
23
30 1 1
6
1 5
1 4
1 5
2 2
1 5
1 4
0
6
11
17
6
10 1 1
1
1 12
-1
Solution
模拟。
用pair<int,int>存空白区间,
用优先队列(priority queue)存(维护)所有空白区间。
这里有一个我遇到的问题:存(维护)何种空白区间。
显然有两种方案:
(1)存“实际”的空白区间,即(后车头/道路起点--前车尾/道路终点),停车时需考虑前后车距;
(2)存“可用”的空白区间,“可用”的含义是只要长度允许,车可在区间内任意停放,亦即不用考虑前后车距。
按方式(2),停车操作很方便实现,但离开操作就很麻烦(我在此处凌乱了,还没确认是否可做)。
按方式(1)则相反,但停车操作只是if-else,思路很清楚。
另外,还需要将当前活跃(active)区间用数组标记,将区间(a, b)记成 tail[a]=b, head[b]=a
#include<bits/stdc++.h>
#define X first
#define Y second
#define set1(a) memset(a, -1, sizeof(a))
#define remove(a) head[tail[a]]=-1, tail[a]=-1
#define renew(a, b) tail[a]=b, head[b]=a
using namespace std;
typedef pair<int,int> pii;
pii r[];
int L, b, f, n;
void input(){
scanf("%d%d%d%d", &L, &b, &f, &n);
for(int i=; i<=n; i++)
scanf("%d%d", &r[i].X, &r[i].Y);
} priority_queue<pii, vector<pii>, greater<pii> > q;
stack<pii> s;
const int MAX_L=1e5+;
int head[MAX_L], tail[MAX_L];
int ans[];
void park(int i){
int len=r[i].Y;
ans[i]=-;
while(!q.empty()){
pii top=q.top();
q.pop();
if(tail[top.X]!=top.Y) continue;
if(top.X==){
if(top.Y==L){
if(L>=len){
ans[i]=;
remove();
if(L>len){
q.push(pii(len, L));
//printf("%d %d\n", len, L);
renew(len, L);
}
}
}
else if(top.Y>=len+f){
ans[i]=;
remove();
q.push(pii(len, top.Y));
renew(len, top.Y);
}
}
else if(top.Y>=top.X+b+len){
if(top.Y==L){
remove(top.X);
renew(top.X, top.X+b);
ans[i]=top.X+b;
if(L>top.X+b+len){
q.push(pii(top.X+b+len, L));
renew(top.X+b+len, L);
}
}
else if(top.Y>=top.X+b+len+f){
remove(top.X);
renew(top.X, top.X+b);
ans[i]=top.X+b;
q.push(pii(top.X+b+len, top.Y));
renew(top.X+b+len, top.Y);
}
}
if(~ans[i]) break;
s.push(top);
}
while(!s.empty())
q.push(s.top()), s.pop();
} void leave(int i){
int lb=ans[i], rb=lb+r[i].Y;
int tmp;
if(~head[lb]) lb=head[lb], remove(lb);
if(~tail[rb]) tmp=tail[rb], remove(rb), rb=tmp; //error-prone
q.push(pii(lb, rb));
renew(lb, rb);
} void init(){
set1(head);
set1(tail);
q.push(pii(, L));
renew(, L);
} int main(){
//freopen("in", "r", stdin);
input();
init();
for(int i=; i<=n; i++)
if(r[i].X==) park(i), printf("%d\n", ans[i]);
else leave(r[i].Y);
return ;
}
P.S. 这道题的模拟也可以不用优先队列,用链表也行。
Codeforces 46D Parking Lot的更多相关文章
- ●CodeForces 480E Parking Lot
题链: http://codeforces.com/problemset/problem/480/E题解: 单调队列,逆向思维 (在线的话应该是分治做,但是好麻烦..) 离线操作,逆向考虑, 最后的状 ...
- Codeforces 219E Parking Lot 线段树
Parking Lot 线段树区间合并一下, 求当前要占的位置, 不包括两端点的写起来方便一点. #include<bits/stdc++.h> #define LL long long ...
- Codeforces Round #135 (Div. 2) E. Parking Lot 线段数区间合并
E. Parking Lot time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- Codeforces 480.E Parking Lot
E. Parking Lot time limit per test 3 seconds memory limit per test 256 megabytes input standard inpu ...
- 【26.8%】【CF 46D】Parking Lot
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- Codeforces Parking Lot
http://codeforces.com/problemset/problem/630/I 简单的排列组合,推式子技巧:举一个小样例,看着推,别抽象着推,容易错 #include <iostr ...
- Parking Lot CodeForces - 480E
大意: 给定01矩阵, 单点赋值为1, 求最大全0正方形. 将询问倒序处理, 那么答案一定是递增的, 最多增长$O(n)$次, 对于每次操作暴力判断答案是否增长即可, 也就是说转化为判断是否存在一个边 ...
- Codeforces Round#415 Div.2
A. Straight «A» 题面 Noora is a student of one famous high school. It's her final year in school - she ...
- CF 480 E. Parking Lot
CF 480 E. Parking Lot http://codeforces.com/contest/480/problem/E 题意: 给一个n*m的01矩阵,每次可以将一个0修改为1,求最大全0 ...
随机推荐
- AutoMapper使用
1.安装 现在AutoMapper已经更新到5.0版本了,可查看 http://www.nuget.org/packages/AutoMapper/ 我环境是4.0的,nuget安装 http://w ...
- .NET 知识
1.读懂IL代码就这么简单 IL是.NET框架中中间语言(Intermediate Language)的缩写.使用.NET框架提供的编译器可以直接将源程序编译为.exe或.dll文件,但此时编译出来的 ...
- android中scrollTo和scrollBy的理解
protected int mScrollX; //该视图内容相当于视图起始坐标的偏移量 , X轴 方向 protected int mScrollY; //该视图内容相当 ...
- C# 鼠标穿透窗体功能
通过以下代码,在窗体启动后调用方法SetPenetrate() 即可实现窗体的穿透功能. 同样该功能需要加载命名空间 using System.Runtime.InteropServices; pri ...
- .net程序集强命名(签名)
要想得到强签名的dll有两种情况: 1.给项目添加强命名 在你的项目右键->属性->签名,勾选“为程序集签名”,新建 或 浏览已经新建过的.pfx文件,然后重新build项目,生成的dll ...
- git的简介,安装以及使用
1git的简介 Git是什么? Git是目前世界上最先进的分布式版本控制系统(没有之一). Git有什么特点?简单来说就是:高端大气上档次! 2Linus一直痛恨的CVS及SVN都是集中式的版本控制系 ...
- Qt opencv程序运行异常
搭建了两次qt opencv vs ,经常出现程序运行异常.找了几个原因如下: 1.opencv的路径未配置或配置有误. 2.qt中pro文件包含不正确. 3.测试opencv程序不正确.如视频或图片 ...
- 从无重复大数组找TOP N元素的最优解说起
有一类面试题,既可以考察工程师算法.也可以兼顾实践应用.甚至创新思维,这些题目便是好的题目,有区分度表现为可以有一般解,也可以有最优解.最近就发现了一个这样的好题目,拿出来晒一晒. 1 题目 原文: ...
- jsonp的后台怎么返回去数据
- linux下定时任务的使用
使用方法 执行crontab -e命令会进入一个可编辑界面,在该界面中我们可以制定定时任务,然后保存退出(wq) 格式如下: 由于直接运行编辑命令后只是一个空白界面,不够友好,所以建议使用以下方式来增 ...