svm分类算法在opencv3中有了很大的变动,取消了CvSVMParams这个类,因此在参数设定上会有些改变。

opencv中的svm分类代码,来源于libsvm。

#include "stdafx.h"
#include "opencv2/opencv.hpp"
using namespace cv;
using namespace cv::ml; int main(int, char**)
{
int width = , height = ;
Mat image = Mat::zeros(height, width, CV_8UC3); //创建窗口可视化 // 设置训练数据
int labels[] = { , -, , ,-,,-,,-,- };
Mat labelsMat(, , CV_32SC1, labels); float trainingData[][] = { { , }, { , }, { , }, { , }, { , },
{ , }, { , } , { , } , { , } , { , } };
Mat trainingDataMat(, , CV_32FC1, trainingData); // 创建分类器并设置参数
Ptr<SVM> model =SVM::create();
model->setType(SVM::C_SVC);
model->setKernel(SVM::LINEAR); //核函数 //设置训练数据
Ptr<TrainData> tData =TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat); // 训练分类器
model->train(tData); Vec3b green(, , ), blue(, , );
// Show the decision regions given by the SVM
for (int i = ; i < image.rows; ++i)
for (int j = ; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(, ) << j, i); //生成测试数据
float response = model->predict(sampleMat); //进行预测,返回1或-1 if (response == )
image.at<Vec3b>(i, j) = green;
else if (response == -)
image.at<Vec3b>(i, j) = blue;
} // 显示训练数据
int thickness = -;
int lineType = ;
Scalar c1 = Scalar::all(); //标记为1的显示成黑点
Scalar c2 = Scalar::all(); //标记成-1的显示成白点
//绘图时,先宽后高,对应先列后行
for (int i = ; i < labelsMat.rows; i++)
{
const float* v = trainingDataMat.ptr<float>(i); //取出每行的头指针
Point pt = Point((int)v[], (int)v[]);
if (labels[i] == )
circle(image, pt, , c1, thickness, lineType);
else
circle(image, pt, , c2, thickness, lineType); } imshow("SVM Simple Example", image);
waitKey(); }

如果只是简单的点分类,svm的参数设置就这么两行就行了,但如果是其它更为复杂的分类,则需要设置更多的参数。

Ptr<SVM> svm = SVM::create();    //创建一个分类器
svm->setType(SVM::C_SVC); //设置svm类型

由于opencv中的svm分类算法是根据libsvm改写而来的,libsvm是台湾一学者编写的matlab版本的svm算法,所以参数的设定的也大致相同。svm类型除了C_SVC之外,还有NU_SVC,ONE_CLASS,EPS_SVR,NU_SVR.

还有其它的参数,如

 svm->setKernel(SVM::POLY); //设置核函数;
svm->setDegree(0.5);
svm->setGamma();
svm->setCoef0();
svm->setNu(0.5);
svm->setP();
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, , 0.01));
svm->setC(C);

如果前面svm类型选择的不同,后面的参数设置也不同,具体的设置可以了解一下libsvm的参数设置。具体介绍可参照 :libsvm参数说明

setTermCriteria是用来设置算法的终止条件, SVM训练的过程就是一个通过 迭代 方式解决约束条件下的二次优化问题,这里我们指定一个最大迭代次数和容许误差,以允许算法在适当的条件下停止计算

在opencv3中实现机器学习之:利用svm(支持向量机)分类的更多相关文章

  1. 在opencv3中的机器学习算法

    在opencv3.0中,提供了一个ml.cpp的文件,这里面全是机器学习的算法,共提供了这么几种: 1.正态贝叶斯:normal Bayessian classifier    我已在另外一篇博文中介 ...

  2. 在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类

    手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*20 ...

  3. 在opencv3中实现机器学习之:利用逻辑斯谛回归(logistic regression)分类

    logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻 ...

  4. 在opencv3中实现机器学习之:利用正态贝叶斯分类

    opencv3.0版本中,实现正态贝叶斯分类器(Normal Bayes Classifier)分类实例 #include "stdafx.h" #include "op ...

  5. opencv3中的机器学习算法之:EM算法

    不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmea ...

  6. 在opencv3中的机器学习算法练习:对OCR进行分类

    OCR (Optical Character Recognition,光学字符识别),我们这个练习就是对OCR英文字母进行识别.得到一张OCR图片后,提取出字符相关的ROI图像,并且大小归一化,整个图 ...

  7. 【机器学习基础】SVM实现分类识别及参数调优(二)

    前言 实现分类可以使用SVM方法,但是需要人工调参,具体过程请参考here,这个比较麻烦,小鹅不喜欢麻烦,正好看到SVM可以自动调优,甚好! 注意 1.reshape的使用: https://docs ...

  8. python中Scikit-Learn机器学习模块

    Scikit-Learn是基于python的机器学习模块,基于BSD开源许可证.这个项目最早由DavidCournapeau 在2007 年发起的,目前也是由社区自愿者进行维护. Scikit-Lea ...

  9. Stanford机器学习---第八讲. 支持向量机SVM

    原文: http://blog.csdn.net/abcjennifer/article/details/7849812 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回 ...

随机推荐

  1. 优于CoreData的Realm数据库基础教程

    Realm 是一个跨平台的移动数据库引擎,于 2014 年 7 月发布,准确来说,它是专门为移动应用所设计的数据持久化解决方案之一. Realm 可以轻松地移植到您的项目当中,并且绝大部分常用的功能( ...

  2. 由一个activity跳转到另一个activity

    定义一个按钮,当点击的时候跳转到另一个activity的界面 1.新建第二个activity 2.在第二个Java源码处继承第一个activity,导入 3.在source中复写Oncreat方法 4 ...

  3. unity学习网站汇总

    由于最近要学习unity3d 开发,把自己找来的资料汇总下 unity3D官方学习资源:https://www.assetstore.unity3d.com/ unity3D API查询网站:http ...

  4. PHPExcel中open_basedir restriction in effect的解决方法

    用PHPExcel做导出execl的时候发现在本地没有问题,但是把网站传到租用的服务器的时候就报错,具体如下: Warning: realpath() [function.realpath]: ope ...

  5. 局域网内搭建git

    git简介:请大家参看git官网的介绍 http://git-scm.com/book/zh/v1  还有这位大神的git教程:http://www.liaoxuefeng.com/wiki/0013 ...

  6. bsearch的溢出问题

    在java中为了避免 low+high溢出,可以用无符号右移:正数高位补0,负数高位补1 int mid = (low + high) >>> 1; 如果是在c++中,那么需要先转换 ...

  7. 利用文本编辑器输入Hello.java,并在JDK环境下编译和运行。请将程序编译、运行的结果

  8. linux安装pylab

    在linux下就是一句话 sudo apt-get install python-matplotlib 该工具包含了pylab, numpy,scipy和matplotlib四个工具包 对matplo ...

  9. apache CXF wsdl2java工具的使用

    cxf的wsdl2java命令和JDK的wsimport命令的区别和使用 JDK提供了一个wsimport.exe的命令,主要是用于将WebService生成客户端代码,然后好调用WebService ...

  10. POJ 3150 Cellular Automaton --矩阵快速幂及优化

    题意:给一个环,环上有n块,每块有个值,每一次操作是对每个点,他的值变为原来与他距离不超过d的位置的和,问k(10^7)次操作后每块的值. 解法:一看就要化为矩阵来做,矩阵很好建立,大白书P157页有 ...