Libsvm自定义核函数【转】
1. 使用libsvm工具箱时,可以指定使用工具箱自带的一些核函数(-t参数),主要有:
-t kernel_type : set type of kernel function (default 2)
- 0 -- linear: u'*v
- 1 -- polynomial: (gamma*u'*v + coef0)^degree
- 2 -- radial basis function: exp(-gamma*|u-v|^2)
- 3 -- sigmoid: tanh(gamma*u'*v + coef0)
2. 有时我们需要使用自己的核函数,这时候可以用 -t 4参数来实现:
-t kernel_type : set type of kernel function (default 2)
4 -- precomputed kernel (kernel values in training_instance_matrix)
使用-t 4参数时,再有了核函数后,需要给出核矩阵,关于核函数以及核函数构造相关的知识,大家可以看看相关书籍,在此不特别深入说明。
比如线性核函数 是 K(x,x') = (x * x'),设训练集是train_data,设训练集有150个样本 , 测试集是test_data,设测试集有120个样本
则 训练集的核矩阵是 ktrain1 = train_data*train_data'
测试集的核矩阵是 ktest1 = test_data*train_data'
想要使用-t 4参数还需要把样本的序列号放在核矩阵前面 ,形成一个新的矩阵,然后使用svmtrain建立支持向量机,再使用svmpredict进行预测即可。形式与使用其他-t参数少有不同,如下:
ktrain1 = train_data*train_data';
Ktrain1 = [(1:150)',ktrain1]; model_precomputed1 = svmtrain(train_label, Ktrain1, '-t 4'); % 注意此处的 输入 Ktrain1 ktest1 = test_data*train_data';
Ktest1 = [(1:120)', ktest1]; [predict_label_P1, accuracy_P1, dec_values_P1] = svmpredict(test_label,Ktest1,model_precomputed1); % 注意此处输入Ktest1</pre>
下面是一个整体的小例子,大家可以看一下:
%% Use_precomputed_kernelForLibsvm_example
% faruto
% last modified by 2011.04.20
%%
tic;
clear;
clc;
close all;
format compact;
%%
load heart_scale.mat;
% Split Data
train_data = heart_scale_inst(1:150,:);
train_label = heart_scale_label(1:150,:);
test_data = heart_scale_inst(151:270,:);
test_label = heart_scale_label(151:270,:); %% Linear Kernel
model_linear = svmtrain(train_label, train_data, '-t 0');
[predict_label_L, accuracy_L, dec_values_L] = svmpredict(test_label, test_data, model_linear); %% Precomputed Kernel One
% 使用的核函数 K(x,x') = (x * x')
% 核矩阵
ktrain1 = train_data*train_data';
Ktrain1 = [(1:150)',ktrain1];
model_precomputed1 = svmtrain(train_label, Ktrain1, '-t 4');
ktest1 = test_data*train_data';
Ktest1 = [(1:120)', ktest1];
[predict_label_P1, accuracy_P1, dec_values_P1] = svmpredict(test_label, Ktest1, model_precomputed1); %% Precomputed Kernel Two
% 使用的核函数 K(x,x') = ||x|| * ||x'||
% 核矩阵
ktrain2 = ones(150,150);
for i = 1:150
for j = 1:150
ktrain2(i,j) = sum(train_data(i,:).^2)^0.5 * sum(train_data(j,:).^2)^0.5;
end
end
Ktrain2 = [(1:150)',ktrain2];
model_precomputed2 = svmtrain(train_label, Ktrain2, '-t 4'); ktest2 = ones(120,150);
for i = 1:120
for j = 1:150
ktest2(i,j) = sum(test_data(i,:).^2)^0.5 * sum(train_data(j,:).^2)^0.5;
end
end
Ktest2 = [(1:120)', ktest2];
[predict_label_P2, accuracy_P2, dec_values_P2] = svmpredict(test_label, Ktest2, model_precomputed2);
%% Precomputed Kernel Three
% 使用的核函数 K(x,x') = (x * x') / ||x|| * ||x'||
% 核矩阵
ktrain3 = ones(150,150);
for i = 1:150
for j = 1:150
ktrain3(i,j) = ...
train_data(i,:)*train_data(j,:)'/(sum(train_data(i,:).^2)^0.5 * sum(train_data(j,:).^2)^0.5);
end
end
Ktrain3 = [(1:150)',ktrain3];
model_precomputed3 = svmtrain(train_label, Ktrain3, '-t 4'); ktest3 = ones(120,150);
for i = 1:120
for j = 1:150
ktest3(i,j) = ...
test_data(i,:)*train_data(j,:)'/(sum(test_data(i,:).^2)^0.5 * sum(train_data(j,:).^2)^0.5);
end
end
Ktest3 = [(1:120)', ktest3];
[predict_label_P3, accuracy_P3, dec_values_P3] = svmpredict(test_label, Ktest3, model_precomputed3); %% Display the accuracy
accuracyL = accuracy_L(1) % Display the accuracy using linear kernel
accuracyP1 = accuracy_P1(1) % Display the accuracy using precomputed kernel One
accuracyP2 = accuracy_P2(1) % Display the accuracy using precomputed kernel Two
accuracyP3 = accuracy_P3(1) % Display the accuracy using precomputed kernel Three
%%
toc;
运行结果:
Accuracy = 85% (102/120) (classification)
Accuracy = 85% (102/120) (classification)
Accuracy = 67.5% (81/120) (classification)
Accuracy = 84.1667% (101/120) (classification)
accuracyL =
85
accuracyP1 =
85
accuracyP2 =
67.5000
accuracyP3 =
84.1667
Elapsed time is 1.424549 seconds.
3. 交叉验证
accuracy = svmtrain(train_label, Ktrain1, '-t 4 -v 10');
Libsvm自定义核函数【转】的更多相关文章
- 6.LibSVM核函数
libsvm的核函数类型(svmtrain.c注释部分): "-t kernel_type : set type of kernel function (default 2)\n" ...
- libsvm的安装,数据格式,常见错误,grid.py参数选择,c-SVC过程,libsvm参数解释,svm训练数据,libsvm的使用详解,SVM核函数的选择
直接conda install libsvm安装的不完整,缺几个.py文件. 第一种安装方法: 下载:http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm. ...
- SVM学习笔记(一):libsvm参数说明(转)
LIBSVM 数据格式需要---------------------- 决策属性 条件属性a 条件属性b ... 2 1:7 2:5 ... 1 1:4 2:2 ... 数据格式转换--------- ...
- LIBSVM使用方法及参数设置 主要参考了一些博客以及自己使用经验。
主要参考了一些博客以及自己使用经验.收集来觉得比较有用的. LIBSVM 数据格式需要---------------------- 决策属性 条件属性a 条件属性b ... 2 1:7 ...
- LIBSVM使用方法及参数设置
LIBSVM 数据格式需要---------------------- 决策属性 条件属性a 条件属性b ... 2 1:7 2:5 ... 1 1:4 2:2 ... 数据格式转换--------- ...
- scikit-learn 支持向量机算法库使用小结
之前通过一个系列对支持向量机(以下简称SVM)算法的原理做了一个总结,本文从实践的角度对scikit-learn SVM算法库的使用做一个小结.scikit-learn SVM算法库封装了libsvm ...
- svm使用的一般步骤
LIBSVM 使用的一般步骤是:1)准备数据集,转化为 LIBSVM支持的数据格式 :[label] [index1]:[value1] [index2]:[value2] ...即 [l类别标号] ...
- SVM原理与实践
SVM迅速发展和完善,在解决小样本.非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中.从此迅速的发展起来,已经在许多领域(生物信息学,文本和手写识别等)都取 ...
- [转] 从零推导支持向量机 (SVM)
原文连接 - https://zhuanlan.zhihu.com/p/31652569 摘要 支持向量机 (SVM) 是一个非常经典且高效的分类模型.但是,支持向量机中涉及许多复杂的数学推导,并需要 ...
随机推荐
- vm虚拟机自定义安装centOS找不到网卡
问题:自定义简化安装后执行ifconfig无法找到eth0网卡 1.查看eth0网络配置: [root@minion1 ~]# cat /etc/sysconfig/network-scripts/i ...
- struts+spring action应配置为scope="prototype"
truts+spring action应配置为scope="prototype" <bean id="personAction" scope=" ...
- [实战]MVC5+EF6+MySql企业网盘实战(28)——其他列表
写在前面 本篇文章将实现,其他文件类型的列表. 系列文章 [EF]vs15+ef6+mysql code first方式 [实战]MVC5+EF6+MySql企业网盘实战(1) [实战]MVC5+EF ...
- 使用 GDB 调试多进程程序
使用 GDB 调试多进程程序 GDB 是 linux 系统上常用的调试工具,本文介绍了使用 GDB 调试多进程程序的几种方法,并对各种方法进行比较. 3 评论 田 强 (tianq@cn.ibm.co ...
- 基于jquery的相册预览gallery
众多有图片的产品,都要加个图片预览功能.然后市面上就出现了各种各样的相册,下面也提供一个基于jquery的相册. 源码:https://github.com/lilyH/gallery 版本: v0. ...
- 错误 1 未知的服务器标记“asp:ScriptManager”。
如题 ... 解决方案 :将 <%@ Register Assembly="System.Web.Extensions, Version=1.0.61025.0, Culture=ne ...
- HDOJ 4731 Minimum palindrome
Minimum palindrome Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- thinkphp中field方法
hinkPHP的CURD操作中有很多非常实用的方法,从这篇开始,我们会为大家一一介绍. 首先为大家介绍下field方法的用法.field属于模型的连贯操作方法之一,主要目的是标识要返回或者操作的字段, ...
- HDOJ 2097
#include<stdio.h> int func(int n,int k) { ; a=n; ) { b+=a%k; a=a/k; } return b; } int main() { ...
- IOS多线程(NSThread)
1.创建方法 使用NSThread创建线程主要有两个个方法,分别如下 NSThread* myThread = [[NSThread alloc] initWithTarget:self sele ...