K-th Number
Time Limit: 20000MS   Memory Limit: 65536K
Total Submissions: 50247   Accepted: 17101
Case Time Limit: 2000MS

Description

You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment. 
That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?" 
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

Input

The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000). 
The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given. 
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

Output

For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

Sample Input

7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3

Sample Output

5
6
3

Hint

This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.

题目链接:POJ 2104    HDU 2665(HDU题面描述有误,虽说是求kth big其实还是跟POJ一样求kth small)

看主席树看了N久,终于把更新操作和查询操作看懂了:),其间找了无数篇博客但是其中绝大部分都是泛泛而谈有一些甚至只有代码连注释都没有,

很多次想弃疗(感觉这高大上的数据结构弱比我估计以后很难用到),然而还是没有放弃终于看懂一点点……故想通过这两道模版题来说一下弱比我的理解……

首先要知道普通线段树如何求整个范围内第k大,单点更新+单点查询(至叶子节点),然后就是这个区间第K大(小)怎么弄呢?由于单点更新的时候只会更新一条路上的东西即树上一层只会更新一个节点,比如某一层有两个节点来管理【1,2】与【 3,4】,假设更新1这个值,显然【3,4】是不会变的,只是管理【1,2】这个节点的cnt值加1,当然,这个节点下面还有【1,1】与【2,2】这俩叶子,同样道理也只会更新管理【1,1】的节点,使它的cnt值加1,管理【2,2】的节点不动……

根据二叉树的性质可以知道,每一次修改就只要新建出Log(N)左右个节点就可以与之前的树形成一个新的树,树上的老节点就是不用更新的,新节点就是更新的再指向老的节点(即很可能会与老节点共用子节点)。然后就用到了前缀和的思想,一个元素均不相同的序列可以发现这样一个规律,假设10个数为1 3 5 7 9 2 4 6 8 10,先简化一下问题,求【3,7】的节点cnt为多少,那显然是【1,7】.cnt-【1,(3-1)】.cnt=5,继而就可以求【3,4】、【5,7】甚至更后面的小区间内cnt值,那问题就成了一个前面讲的线段树求整个范围内第k大,只是整个范围一直被维护为L,R之间而已。

主席树这种写法需要root数组、和lson与rson的数组,还有记录区间内数字出现个数的cnt数组

更新操作:首先复制当前所在原节点的所有信息,再将cnt+1(因为你在原来的基础上插入了一个数),然后用单点更新的思路进行复制并更新(讲复制感觉更贴切实际,因为更新是在副本上更新的而不是原来节点上),走到哪就把哪个节点复制下来再在这个副本上进行更新

查询操作:用两颗不同的树的cnt作差再判断查询方向,写法上跟普通的单点查询非常相似

最后题目数据范围比较大需要离散化一下另外我加了个没什么卵用的读入外挂……

POJ 2104代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <vector>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const int N=100010;
struct seg
{
int lson,rson;
int cnt;
};
seg T[N*20];
int tot,rt[N];
int arr[N];
vector<int>pos;
void init()
{
tot=0;
CLR(rt,0);
pos.clear();
}
int Scan()
{
int res=0,ch,flag=0;
if((ch=getchar())=='-')
flag=1;
else if(ch>='0'&&ch<='9')
res=ch-'0';
while((ch=getchar())>='0'&&ch<='9')
res=res*10+ch-'0';
return flag?-res:res;
}
void build(int &cur,int l,int r)//注意第一个参数是引用为了修改原值
{
cur=++tot;
T[cur].cnt=0;
if(l==r)
return ;
else
{
int mid=MID(l,r);
build(T[cur].lson,l,mid);
build(T[cur].rson,mid+1,r);
}
}
void update(int &cur,int ori,int l,int r,int val)//cur为准备新开的节点,ori为原来对应位置的节点
{
cur=++tot;//新建一颗树
T[cur].lson=T[ori].lson;//复制信息
T[cur].rson=T[ori].rson;//复制信息
T[cur].cnt=T[ori].cnt+1;//更新新增值
if(l==r)
return ;
else
{
int mid=MID(l,r);
if(val<=mid)
update(T[cur].lson,T[ori].lson,l,mid,val);
else
update(T[cur].rson,T[ori].rson,mid+1,r,val);
}
}
int query(int st,int ed,int l,int r,int k)
{
if(l==r)
return l;
else
{
int mid=MID(l,r);
int cnt=T[T[ed].lson ].cnt-T[T[st].lson ].cnt;//与普通求Kth一样先看lson(看rson也行下面顺序变一下而已)
if(k<=cnt)
return query(T[st].lson,T[ed].lson,l,mid,k);
else
return query(T[st].rson,T[ed].rson,mid+1,r,k-cnt);
}
}
int main(void)
{
int n,m,i,l,r,k;
while (~scanf("%d%d",&n,&m))
{
for (i=1; i<=n; ++i)
{
scanf("%d",&arr[i]);
pos.push_back(arr[i]);
} sort(pos.begin(),pos.end());//pos储存着原值
pos.erase(unique(pos.begin(),pos.end()),pos.end());
for (i=1; i<=n; ++i)
arr[i]=lower_bound(pos.begin(),pos.end(),arr[i])-pos.begin()+1;//arr变为离散化之后的数组仅用来更新 int SZ=pos.size();
build(rt[0],1,SZ); for (i=1; i<=n; ++i)
update(rt[i],rt[i-1],1,SZ,arr[i]);
for (i=0; i<m; ++i)
{
l=Scan();
r=Scan();
k=Scan();
int indx=query(rt[l-1],rt[r],1,SZ,k)-1;//由于pos下标从0开始
printf("%d\n",pos[indx]);//再映射回去
}
init();
}
return 0;
}

搞半天发现build没什么卵用……直接update也行,离散化也优化了一下,简化了HDU的代码,速度快了不少

HDU代码:

#include <stdio.h>
#include <algorithm>
#include <vector>
#include <string.h>
using namespace std;
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define MID(x,y) ((x+y)>>1) const int N=1e5+7;
struct seg
{
int lson,rson;
int cnt;
};
seg T[N*20];
int tot,root[N];
int arr[N];
vector<int>vec; void init()
{
tot=0;
vec.clear();
CLR(root,0);
}
void update(int &cur,int ori,int l,int r,int val)
{
cur=++tot;
T[cur]=T[ori];
++T[cur].cnt;
if(l==r)
return ;
int mid=MID(l,r);
if(val<=mid)
update(T[cur].lson,T[ori].lson,l,mid,val);
else
update(T[cur].rson,T[ori].rson,mid+1,r,val);
}
int query(int L,int R,int l,int r,int k)
{
if(l==r)
return l;
int mid=MID(l,r);
int cnt=T[T[R].lson].cnt-T[T[L].lson].cnt;
if(k<=cnt)
return query(T[L].lson,T[R].lson,l,mid,k);
else
return query(T[L].rson,T[R].rson,mid+1,r,k-cnt);
}
int main(void)
{
int T,n,m,l,r,k,i;
scanf("%d",&T);
while (T--)
{
init();
scanf("%d%d",&n,&m);
for (i=1; i<=n; ++i)
{
scanf("%d",&arr[i]);
vec.push_back(arr[i]);
} sort(vec.begin(),vec.end());
vec.erase(unique(vec.begin(),vec.end()),vec.end()); int R=vec.size()-1;//直接离散为0~(size-1)方便后面就不用搞什么+1-1了
//build(root[0],0,R);
for (i=1; i<=n; ++i)
{
arr[i]=lower_bound(vec.begin(),vec.end(),arr[i])-vec.begin();
update(root[i],root[i-1],0,R,arr[i]);
}
for (i=0; i<m; ++i)
{
scanf("%d%d%d",&l,&r,&k);
int indx=query(root[l-1],root[r],0,R,k);
printf("%d\n",vec[indx]);
}
}
return 0;
}

POJ 2104&HDU 2665 Kth number(主席树入门+离散化)的更多相关文章

  1. hdu 2665 Kth number 主席树

    Kth number Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Prob ...

  2. HDU - 2665 Kth number 主席树/可持久化权值线段树

    题意 给一个数列,一些询问,问$[l,r]$中第$K$大的元素是哪一个 题解: 写法很多,主席树是最常用的一种之一 除此之外有:划分树,莫队分块,平衡树等 主席树的定义其实挺模糊, 一般认为就是可持久 ...

  3. poj2104 k-th number 主席树入门讲解

    poj2104 k-th number 主席树入门讲解 定义:主席树是一种可持久化的线段树 又叫函数式线段树   刚开始学是不是觉得很蒙逼啊 其实我也是 主席树说简单了 就是 保留你每一步操作完成之后 ...

  4. hdu 2665 Kth number(划分树模板)

    http://acm.hdu.edu.cn/showproblem.php?pid=2665 [ poj 2104 2761 ]  改变一下输入就可以过 http://poj.org/problem? ...

  5. HDU 2665 Kth number(划分树)

    Kth number Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...

  6. hdu 2665 Kth number

    划分树 /* HDU 2665 Kth number 划分树 */ #include<stdio.h> #include<iostream> #include<strin ...

  7. 主席树[可持久化线段树](hdu 2665 Kth number、SP 10628 Count on a tree、ZOJ 2112 Dynamic Rankings、codeforces 813E Army Creation、codeforces960F:Pathwalks )

    在今天三黑(恶意评分刷上去的那种)两紫的智推中,突然出现了P3834 [模板]可持久化线段树 1(主席树)就突然有了不详的预感2333 果然...然后我gg了!被大佬虐了! hdu 2665 Kth ...

  8. poj 2104 K-th Number 主席树+超级详细解释

    poj 2104 K-th Number 主席树+超级详细解释 传送门:K-th Number 题目大意:给出一段数列,让你求[L,R]区间内第几大的数字! 在这里先介绍一下主席树! 如果想了解什么是 ...

  9. SPOJ MKTHNUM & POJ 2104 - K-th Number - [主席树模板题]

    题目链接:http://poj.org/problem?id=2104 Description You are working for Macrohard company in data struct ...

随机推荐

  1. codeforces B. Sereja and Stairs 解题报告

    题目链接:http://codeforces.com/problemset/problem/381/B 题目意思:给定一个m个数的序列,需要从中组合出符合楼梯定义 a1 < a2 < .. ...

  2. 【python】any()和all()

    any(iterable) 版本:该函数适用于2.5以上版本,兼容python3版本. 说明:如果iterable的任一元素不为0.''.False,返回True. all(iterable) 说明: ...

  3. 【linux】awk的使用

    教程来自:http://www.runoob.com/linux/linux-comm-awk.html 教程中的例子很好,可以有助于快速上手awk.但是里面的细节介绍的并不清楚. 问题1:什么时候写 ...

  4. 查看MySQL配置文件路径及相关配置

    [root@DB ~]# /usr/local/mysql/bin/mysqld --verbose --help |grep -A 1 'Default options' Default optio ...

  5. linux下php增加curl扩展,生成curl.so文件

    进入php源代码目录 cd /php5.6.9/ext/curl 执行生成so文件编译模式 /usr/local/php/bin/phpize 编译curl扩展 ./configure --with- ...

  6. nohup之no hang up, kill, ps -ef, ps aux, grep

    背景:今天在安装hudson时,每次启动时都必须在linux终端(SecureCRT)执行: java -jar hudson.war --httpPort=18080 --jp13Port=1800 ...

  7. struts2框架——从后台取得数据集,并在前台页面循环显示

    1.CourseBean.java public class CourseBean { private String f_courseId = ""; private String ...

  8. CC2540开发板学习笔记(七)—— 睡眠唤醒

    (一)中断唤醒 一.实验内容 通过中断唤醒在睡眠模式下的CC2540 二.实验原理 1.系统电源管理(工作方式) (1)全功能模式: 高频晶振(16M或者32M)和低频晶振(32.768K RCOSC ...

  9. awk命令

    awk 手册   原文 Table of Contents 1. awk简介 2. awk命令格式和选项 2.1. awk的语法有两种形式 2.2. 命令选项 3. 模式和操作 3.1. 模式 3.2 ...

  10. spring获取webapplicationcontext,applicationcontext几种方法详解

    法一:在初始化时保存ApplicationContext对象代码: ApplicationContext ac = new FileSystemXmlApplicationContext(" ...