Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u

Submit Status

Description

The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6. 
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem: 
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
 

Input

The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
 

Output

For each test case,output the answer on a single line.
 

Sample Input

3
1 1
10 2
10000 72
 

Sample Output

1
6
260
 

Source

ECJTU 2009 Spring Contest
题意:给定n和m,m小于n,求x在1到n之间,满足gcd(x,n)>=m。问这样的x有多少个,实际上x是从m到n之间的。
题解:考察对欧拉函数本质的理解,欧拉函数指的是对于一个数来说小于等于该数的数中与其互质的数的个数。找出n的所有大于m的因子x,设phi(i)为i的欧拉函数值,那么答案就是phi(n/x)的和。比如第二组样例n=10,m=2,x=2,5,10,注意x=1是不满足条件的。答案就是phi(10/2)+phi(10/5)+phi(10/10)=4+1+1=6。phi(10/2)=4代表的是2*1=2 , 2*2=4 , 2*3=6 , 2*4=8 这四个数;phi(10/5)=1代表的是5*1=5;phi(10/10)=1代表的是10*1=10。那么为什么是这样呢?因为我们知道该因子x已经满足条件,比如2满足条件,我们可以让这个数变大为x*y,但一定要在10/2=5的范围之内,而且gcd(n,x*y)=x,因为x不能超过n,也就是把2乘以一个小于5的数y,而且这个y一定要与5是互素的。因为我们一定要保证gcd(n=2*5,2*y)=2,否则就出现重复了。举个例子,比如n=12,3是满足条件的,12/3=4,现在让3变大,2与4是不互素的我们让3*2=6,gcd(12,6)=6!=3,这就出现重复了就不对了,6不是现在算的时候。而欧拉函数值恰好是求一个数小于等于该数中与其互质的数的个数,所以用欧拉函数做就可以了,注意n的范围较大要用sqrt(n)算,因为我们在算小的这一侧因子的时候大的因子也会跟着出来,理解了欧拉函数的本质本题也就迎刃而解了。如描述有错误欢迎指正。
#include <iostream>
#include <cmath>
using namespace std;
int enlur(int n) //求欧拉函数
{
int ans=n;
for(int i=;i*i<=n;i++)
{
if(n%i==)
{
ans=ans/i*(i-);
while(n%i==)
n/=i;
}
}
if(n>)
ans=ans/n*(n-);
return ans;
}
int main()
{
int t;
cin>>t;
while(t--)
{
int n,m,ans=;
cin>>n>>m;
int tmp=sqrt(n);
for(int i=;i<=tmp;i++)
{
if(n%i==)
{
if(i>=m)
ans+=enlur(n/i);
if(n/i>=m)
ans+=enlur(i);
}
}
if(tmp*tmp==n&&tmp>=m) //注意得是tmp>=n
ans-=enlur(tmp);
cout<<ans<<endl;
}
}

HDU 2588 GCD (欧拉函数)的更多相关文章

  1. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  3. HDU 1695 GCD (欧拉函数,容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  4. hdu 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. hdu 1695 GCD 欧拉函数 + 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K]  和 [L ...

  6. HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...

  7. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  8. HDU 2824 简单欧拉函数

    1.HDU 2824   The Euler function 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=2824 3.总结:欧拉函数 题意:求(a ...

  9. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

随机推荐

  1. codevs3243 区间翻转

    题目描述 Description 给出N个数,要求做M次区间翻转(如1 2 3 4变成4 3 2 1),求出最后的序列 输入描述 Input Description 第一行一个数N,下一行N个数表示原 ...

  2. mysql 高级查询

    高级查询:1.连接查询select * from Info,Nation #这是两个表名,中间用逗号隔开形成笛卡尔积select * from Info,Nation where Info.natio ...

  3. iOS开发的那些坑

    最近重新拿起了iOS的开发,使用OC和Swift混编,碰到了一些比较棘手的问题,在这里记录下来,方便自己以后或他人不再入坑.这篇文章的内容包含: UITableViewCell的真实结构在iOS的环境 ...

  4. jQuery EasyUI datagrid实现本地分页的方法

    http://www.codeweblog.com/jquery-easyui-datagrid%e5%ae%9e%e7%8e%b0%e6%9c%ac%e5%9c%b0%e5%88%86%e9%a1% ...

  5. js中按钮控制显示隐藏以及下拉功能

    <script> function show() { var a2=document.getElementById("div2"); if(a2.style.displ ...

  6. Struts2拦截器Interceptor执行顺序理解

    invocation.invoke()方法是拦截器框架的实现核心,通过确定invocation.invoke()方法执行位置,来实现Action执行前后处理操作,在invocation.invoke( ...

  7. CodeForces 701A Cards

    直接看示例输入输出+提示 1. 统计所有数的和 sum,然后求 sum/(n/2) 的到一半数的平均值 6 1 5 7 4 4 3 ->1+5+7+4+4+3=24  分成3组 每组值为8 in ...

  8. [Angularjs]ng-file-upload上传文件

    写在前面 最近在弄文档库的H5版,就查找了下相关的上传组件,发现了ng-upload的东东,推荐给大家. 系列文章 [Angularjs]ng-select和ng-options [Angularjs ...

  9. Linux如何删除以分号开头的文件

    发现在创建文件时,有的时候会不小心创建以分号开头的文件. 如何删除呢? 执行  rm \;   即可删除 把以;号开头的文件名转义后再删除 创建文件:vi  index.php 或者vim  inde ...

  10. 关于vue.js 组件的调用

    包子初学vue.js,有很多不明白的地方还请大家多多指教,在组件的调用的时候,包子有点懵,因为感觉调用组件的方式非常的麻烦,每一个都要实例化,不过,通过不断询问大牛们,我找到了,动态加载组件的方法~~ ...