HDU 2588 GCD (欧拉函数)
Time Limit: 1000MS | Memory Limit: 32768KB | 64bit IO Format: %I64d & %I64u |
Description
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
Output
Sample Input
Sample Output
Source
#include <iostream>
#include <cmath>
using namespace std;
int enlur(int n) //求欧拉函数
{
int ans=n;
for(int i=;i*i<=n;i++)
{
if(n%i==)
{
ans=ans/i*(i-);
while(n%i==)
n/=i;
}
}
if(n>)
ans=ans/n*(n-);
return ans;
}
int main()
{
int t;
cin>>t;
while(t--)
{
int n,m,ans=;
cin>>n>>m;
int tmp=sqrt(n);
for(int i=;i<=tmp;i++)
{
if(n%i==)
{
if(i>=m)
ans+=enlur(n/i);
if(n/i>=m)
ans+=enlur(i);
}
}
if(tmp*tmp==n&&tmp>=m) //注意得是tmp>=n
ans-=enlur(tmp);
cout<<ans<<endl;
}
}
HDU 2588 GCD (欧拉函数)的更多相关文章
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD 欧拉函数+容斥定理
输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...
- HDU 1695 GCD (欧拉函数,容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- hdu 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu 1695 GCD 欧拉函数 + 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K] 和 [L ...
- HDU 1695 GCD 欧拉函数+容斥原理+质因数分解
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- HDU 2824 简单欧拉函数
1.HDU 2824 The Euler function 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=2824 3.总结:欧拉函数 题意:求(a ...
- POJ 2773 Happy 2006【GCD/欧拉函数】
根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...
随机推荐
- BZOJ-1968 COMMON 约数研究 数论+奇怪的姿势
1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1513 Solved: 1154 [Submit] ...
- BZOJ-1002 轮状病毒 高精度加减+Kirchhoff矩阵数定理+递推
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3543 Solved: 1953 [Submit][Statu ...
- poj 1442 名次树
这回要求的是第k小的元素, 参考了ljl大神的模板,orz //insert 插入 //remove 删除 //_find 查找 //kth 返回root为根的树中第k小的元素 //treap插入.删 ...
- POJ2226 Muddy Fields
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10149 Accepted: 3783 Description Rain ...
- UVa247 Calling Circles
Time Limit: 3000MS 64bit IO Format: %lld & %llu map存人名,floyd传递闭包,DFS查询. 输出答案的逗号后面还有个空格,被坑到了2 ...
- 线性判别分析(LDA)准则:FIsher准则、感知机准则、最小二乘(最小均方误差)准则
准则 采用一种分类形式后,就要采用准则来衡量分类的效果,最好的结果一般出现在准则函数的极值点上,因此将分类器的设计问题转化为求准则函数极值问题,即求准则函数的参数,如线性分类器中的权值向量. 分类器设 ...
- Linux下web目录权限设置
1.nginx和php-fpm运行用户为www 2.我们假设web目录所属着为web_owner 3.将web目录的用户和用户组设置为web_owner和www,如下命令:chown -R web_o ...
- mysqldump命令介绍
命令行下具体用法如下: mysqldump -u用戶名 -p密码 数据库名 表名 > 脚本名; 1.导出单个数据库的所有表的数据和结构 mysqldump -h localhost -uroot ...
- UIGestureRecognizer ios手势识别温习
1.UIGestureRecognizer介绍 手势识别在iOS上非常重要,手势操作移动设备的重要特征,极大的增加了移动设备使用便捷性. iOS系统在3.2以后,为方便开发这使用一些常用的手势,提供了 ...
- 下面将详细说明useradd与usermod 的参数及用法!
下面将详细说明useradd与usermod 的参数及用法! 说到这里要另外两句,关于linux下口令相关的文件存放位置说明/usr/bin/passwd 包含 passwd 命令. /etc/pas ...