关于CPU Cache:程序猿需要知道的那些
天下没有免费的午餐,本文转载于:http://cenalulu.github.io/linux/all-about-cpu-cache/
先来看一张本文所有概念的一个思维导图:

为什么要有CPU Cache
随着工艺的提升最近几十年CPU的频率不断提升,而受制于制造工艺和成本限制,目前计算机的内存主要是DRAM并且在访问速度上没有质的突破。因 此,CPU的处理速度和内存的访问速度差距越来越大,甚至可以达到上万倍。这种情况下传统的CPU通过FSB直连内存的方式显然就会因为内存访问的等待, 导致计算资源大量闲置,降低CPU整体吞吐量。同时又由于内存数据访问的热点集中性,在CPU和内存之间用较为快速而成本较高的SDRAM做一层缓存,就 显得性价比极高了。
为什么要有多级CPU Cache
随着科技发展,热点数据的体积越来越大,单纯的增加一级缓存大小的性价比已经很低了。因此,就慢慢出现了在一级缓存(L1 Cache)和内存之间又增加一层访问速度和成本都介于两者之间的二级缓存(L2 Cache)。下面是一段从What Every Programmer Should Know About Memory中摘录的解释:
Soon after the introduction of the cache the system got more complicated. The speed difference between the cache and the main memory increased again, to a point that another level of cache was added, bigger and slower than the first-level cache. Only increasing the size of the first-level cache was not an option for economical rea- sons.
此外,又由于程序指令和程序数据的行为和热点分布差异很大,因此L1 Cache也被划分成L1i (i for instruction)和L1d (d for data)两种专门用途的缓存。
下面一张图可以看出各级缓存之间的响应时间差距,以及内存到底有多慢!

什么是Cache Line
Cache Line可以简单的理解为CPU Cache中的最小缓存单位。目前主流的CPU Cache的Cache Line大小都是64Bytes。假设我们有一个512字节的一级缓存,那么按照64B的缓存单位大小来算,这个一级缓存所能存放的缓存个数就是512/64 = 8个。具体参见下图:

为了更好的了解Cache Line,我们还可以在自己的电脑上做下面这个有趣的实验。
下面这段C代码,会从命令行接收一个参数作为数组的大小创建一个数量为N的int数组。并依次循环的从这个数组中进行数组内容访问,循环10亿次。最终输出数组总大小和对应总执行时间。
#include "stdio.h"
#include <stdlib.h>
#include <sys/time.h> long timediff(clock_t t1, clock_t t2) {
long elapsed;
elapsed = ((double)t2 - t1) / CLOCKS_PER_SEC * ;
return elapsed;
} int main(int argc, char *argv[])
#*******
{ int array_size=atoi(argv[]);
int repeat_times = ;
long array[array_size];
for(int i=; i<array_size; i++){
array[i] = ;
}
int j=;
int k=;
int c=;
clock_t start=clock();
while(j++<repeat_times){
if(k==array_size){
k=;
}
c = array[k++];
}
clock_t end =clock();
printf("%lu\n", timediff(start,end));
return ;
}
如果我们把这些数据做成折线图后就会发现:总执行时间在数组大小超过64Bytes时有较为明显的拐点(当然,由于博主是在自己的Mac笔记本上测 试的,会受到很多其他程序的干扰,因此会有波动)。原因是当数组小于64Bytes时数组极有可能落在一条Cache Line内,而一个元素的访问就会使得整条Cache Line被填充,因而值得后面的若干个元素受益于缓存带来的加速。而当数组大于64Bytes时,必然至少需要两条Cache Line,继而在循环访问时会出现两次Cache Line的填充,由于缓存填充的时间远高于数据访问的响应时间,因此多一次缓存填充对于总执行的影响会被放大,最终得到下图的结果:

如果读者有兴趣的话也可以在自己的linux或者MAC上通过gcc cache_line_size.c -o cache_line_size编译,并通过./cache_line_size执行。
了解Cache Line的概念对我们程序猿有什么帮助?
我们来看下面这个C语言中常用的循环优化例子
下面两段代码中,第一段代码在C语言中总是比第二段代码的执行速度要快。具体的原因相信你仔细阅读了Cache Line的介绍后就很容易理解了。
for(int i = ; i < n; i++) {
for(int j = ; j < n; j++) {
int num;
//code
arr[i][j] = num;
}
}
for(int i = ; i < n; i++) {
for(int j = ; j < n; j++) {
int num;
//code
arr[j][i] = num;
}
}
CPU Cache 是如何存放数据的
你会怎么设计Cache的存放规则
我们先来尝试回答一下那么这个问题:
假设我们有一块4MB的区域用于缓存,每个缓存对象的唯一标识是它所在的物理内存地址。每个缓存对象大小是64Bytes,所有可以被缓存对象的大小总和(即物理内存总大小)为4GB。那么我们该如何设计这个缓存?
如果你和博主一样是一个大学没有好好学习基础/数字电路的人 的话,会觉得最靠谱的的一种方式就是:Hash表。把Cache设计成一个Hash数组。内存地址的Hash值作为数组的Index,缓存对象的值作为数 组的Value。每次存取时,都把地址做一次Hash然后找到Cache中对应的位置操作即可。
这样的设计方式在高等语言中很常见,也显然很高效。因为Hash值得计算虽然耗时(10000个CPU Cycle左右),
但是相比程序中其他操作(上百万的CPU Cycle)来说可以忽略不计。而对于CPU Cache来说,本来其设计目标就是在几十CPU
Cycle内获取到数据。如果访问效率是百万Cycle这个等级的话,还不如到Memory直接获取数据。当然,更重要的原因是在硬件上要实现
Memory Address Hash的功能在成本上是非常高的。
为什么Cache不能做成Fully Associative
Fully Associative 字面意思是全关联。在CPU
Cache中的含义是:如果在一个Cache集内,任何一个内存地址的数据可以被缓存在任何一个Cache
Line里,那么我们成这个cache是Fully
Associative。从定义中我们可以得出这样的结论:给到一个内存地址,要知道他是否存在于Cache中,需要遍历所有Cache
Line并比较缓存内容的内存地址。而Cache的本意就是为了在尽可能少得CPU Cycle内取到数据。那么想要设计一个快速的Fully
Associative的Cache几乎是不可能的。
为什么Cache不能做成Direct Mapped
和Fully Associative完全相反,使用Direct Mapped模式的Cache给定一个内存地址,就唯一确定了一条Cache
Line。设计复杂度低且速度快。那么为什么Cache不使用这种模式呢?让我们来想象这么一种情况:一个拥有1M L2
Cache的32位CPU,每条Cache Line的大小为64Bytes。那么整个L2Cache被划为了1M/64=16384条Cache Line。我们为每条Cache Line从0开始编上号。同时32位CPU所能管理的内存地址范围是2^32=4G,那么Direct Mapped模式下,内存也被划为4G/16384=256K的
小份。也就是说每256K的内存地址共享一条Cache Line。但是,这种模式下每条Cache
Line的使用率如果要做到接近100%,就需要操作系统对于内存的分配和访问在地址上也是近乎平均的。而与我们的意愿相反,为了减少内存碎片和实现便
捷,操作系统更多的是连续集中的使用内存。这样会出现的情况就是0-1000号这样的低编号Cache
Line由于内存经常被分配并使用,而16000号以上的Cache
Line由于内存鲜有进程访问,几乎一直处于空闲状态。这种情况下,本来就宝贵的1M二级CPU缓存,使用率也许50%都无法达到。
什么是N-Way Set Associative
为了避免以上两种设计模式的缺陷,N-Way Set Associative缓存就出现了。他的原理是把一个缓存按照N个Cache
Line作为一组(set),缓存按组划为等分。这样一个64位系统的内存地址在4MB二级缓存中就划成了三个部分(见下图),低位6个bit表示在
Cache Line中的偏移量,中间12bit表示Cache组号(set
index),剩余的高位46bit就是内存地址的唯一id。这样的设计相较前两种设计有以下两点好处:
- 给定一个内存地址可以唯一对应一个set,对于set中只需遍历16个元素就可以确定对象是否在缓存中(Full Associative中比较次数随内存大小线性增加)
- 每
2^18(256K)*16(way)=4M的连续热点数据才会导致一个set内的conflict(Direct Mapped中512K的连续热点数据就会出现conflict)

为什么N-Way Set Associative的Set段是从低位而不是高位开始的
下面是一段从How Misaligning Data Can Increase Performance 12x by Reducing Cache Misses摘录的解释:
The vast majority of accesses are close together, so moving the set
index bits upwards would cause more conflict misses. You might be able
to get away with a hash function that isn’t simply the least significant
bits, but most proposed schemes hurt about as much as they help while
adding extra complexity.
由于内存的访问通常是大片连续的,或者是因为在同一程序中而导致地址接近的(即这些内存地址的高位都是一样的)。所以如果把内存地址的高位作为
set index的话,那么短时间的大量内存访问都会因为set index相同而落在同一个set index中,从而导致cache
conflicts使得L2, L3 Cache的命中率低下,影响程序的整体执行效率。
了解N-Way Set Associative的存储模式对我们有什么帮助
了解N-Way Set的概念后,我们不难得出以下结论:2^(6Bits <Cache Line Offset> + 12Bits <Set Index>) = 2^18 = 256K。
即在连续的内存地址中每256K都会出现一个处于同一个Cache
Set中的缓存对象。也就是说这些对象都会争抢一个仅有16个空位的缓存池(16-Way
Set)。而如果我们在程序中又使用了所谓优化神器的“内存对齐”的时候,这种争抢就会越发增多。效率上的损失也会变得非常明显。具体的实际测试我们可以
参考: How Misaligning Data Can Increase Performance 12x by Reducing Cache Misses 一文。
这里我们引用一张Gallery of Processor Cache Effects 中的测试结果图,来解释下内存对齐在极端情况下带来的性能损失。

该图实际上是我们上文中第一个测试的一个变种。纵轴表示了测试对象数组的大小。横轴表示了每次数组元素访问之间的index间隔。而图中的颜色表示
了响应时间的长短,蓝色越明显的部分表示响应时间越长。从这个图我们可以得到很多结论。当然这里我们只对内存带来的性能损失感兴趣。有兴趣的读者也可以阅
读原文分析理解其他从图中可以得到的结论。
从图中我们不难看出图中每1024个步进,即每1024*4即4096Bytes,都有一条特别明显的蓝色竖线。也就是
说,只要我们按照4K的步进去访问内存(内存根据4K对齐),无论热点数据多大它的实际效率都是非常低的!按照我们上文的分析,如果4KB的内存对齐,那
么一个240MB的数组就含有61440个可以被访问到的数组元素;而对于一个每256K就会有set冲突的16Way二级缓存,总共有256K/4K=64个元素要去争抢16个空位,总共有61440/64=960个这样的元素。那么缓存命中率只有1%,自然效率也就低了。
除了这个例子,有兴趣的读者还可以查阅另一篇国人对Page Align导致效率低的实验:http://evol128.is-programmer.com/posts/35453.html
想要知道更多关于内存地址对齐在目前的这种CPU-Cache的架构下会出现的问题可以详细阅读以下两篇文章:
- How Misaligning Data Can Increase Performance 12x by Reducing Cache Misses
- Gallery of Processor Cache Effects
Cache淘汰策略
在文章的最后我们顺带提一下CPU Cache的淘汰策略。常见的淘汰策略主要有LRU和Random两种。通常意义下LRU对于Cache的命中率会比Random更好,所以CPU Cache的淘汰策略选择的是LRU。当然也有些实验显示在Cache Size较大的时候Random策略会有更高的命中率
总结
CPU Cache对于程序猿是透明的,所有的操作和策略都在CPU内部完成。但是,了解和理解CPU Cache的设计、工作原理有利于我们更好的利用CPU Cache,写出更多对CPU Cache友好的程序
Reference
- Gallery of Processor Cache Effects
- How Misaligning Data Can Increase Performance 12x by Reducing Cache Misses
- Introduction to Caches
关于CPU Cache:程序猿需要知道的那些的更多相关文章
- [转帖]关于CPU Cache -- 程序猿需要知道的那些事
关于CPU Cache -- 程序猿需要知道的那些事 很早之前读过作者的blog 记得作者在facebook 工作.. 还写过mysql相关的内容 大拿 本文将介绍一些作为程序猿或者IT从业者应该知道 ...
- 关于CPU Cache -- 程序猿需要知道的那些事
本文将介绍一些作为程序猿或者IT从业者应该知道的CPU Cache相关的知识 文章欢迎转载,但转载时请保留本段文字,并置于文章的顶部 作者:卢钧轶(cenalulu) 本文原文地址:http://ce ...
- 关于CPU Cache -- 程序员需要知道的那些事
本文将介绍一些作为程序猿或者IT从业者应该知道的CPU Cache相关的知识.本章从"为什么会有CPU Cache","CPU Cache的大致设计架构",&q ...
- zx一篇让Java程序猿随时可以翻看的Oracle总结
一篇让Java程序猿随时可以翻看的Oracle总结 前言:Oracle学习也有十几天了,但是呢,接下来还要学习许多其他的东西,并不能提步不前,所以在此总结了以下Oracle中常用的命令和语句,没有语法 ...
- 读书笔记:7个示例科普CPU Cache
本文转自陈皓老师的个人博客酷壳:http://coolshell.cn/articles/10249.html 7个示例科普CPU Cache (感谢网友 @我的上铺叫路遥 翻译投稿) CPU cac ...
- 从Java视角理解CPU缓存(CPU Cache)
从Java视角理解系统结构连载, 关注我的微博(链接)了解最新动态众所周知, CPU是计算机的大脑, 它负责执行程序的指令; 内存负责存数据, 包括程序自身数据. 同样大家都知道, 内存比CPU慢很多 ...
- 从此走上一条iOS程序猿不归路。。。
新的城市,新的生活!前不久刚刚结束了苦逼的面试找工作之旅,期间也小有收货,如今正处年底工作闲暇之余,将前一阵子陆陆续续的总结整理了一下,本人菜鸟程序猿一只,水平有限,本文总结的知识不算深入,比较浅显, ...
- <转>科普CPU Cache line
转载于http://coolshell.cn/articles/10249.html CPU cache一直是理解计算机体系架构的重要知识点,也是并发编程设计中的技术难点,而且相关参考资料如同过江之鲫 ...
- Java程序猿从笨鸟到菜鸟之(九十二)深入java虚拟机(一)——java虚拟机底层结构具体解释
本文来自:曹胜欢博客专栏.转载请注明出处:http://blog.csdn.net/csh624366188 在曾经的博客里面,我们介绍了在java领域中大部分的知识点,从最基础的java最基本的语法 ...
随机推荐
- 【Coding地址汇总】2016年沈航软工学生项目主页
同学们把自己的coding主页链接贴在评论里,要求格式"班号+学号+coding主页链接",如: "1301+13061193 + https://coding.net/ ...
- 数论 - 组合数学 + 素数分解 --- hdu 2284 : Solve the puzzle, Save the world!
Solve the puzzle, Save the world! Problem Description In the popular TV series Heroes, there is a ta ...
- OAuth2.0 基础概述
web:http://oauth.net/2/ rfc:http://tools.ietf.org/html/rfc6749 doc:http://oauth.net/documentation/ c ...
- PhpWind 8.7中禁止后台管理员随意修改会员用户名功能
有人反映PHPWind 8.7中后台可以直接修改用户名的功能太过随意,干脆禁掉. OK,研究一下他的代码,admin/usermange.php tempalate/admin/usermange. ...
- bootstrap glyphicon图标无法显示
如果不注意bootstrap引入css和fonts的规范,则可能会导致bootstrap 在显示glyphicon图标时无法正常显示,显示为方框. 此时可搜索bootstrap.css中的.glyph ...
- Linux初学者指南
1.为啥我们要学习Linux? 我们干嘛要学习Linux? Linux能给我们带来什么价值呢? Linux给我的感觉就是稳定,免费,性能好. 稳定,体现在哪里?我们使用PC机,安装的操作系统一般是wi ...
- Java 上传文件到 SFTP 抛异常 java.lang.NoClassDefFoundError: Could not initialize class sun.security.ec.SunEC 的解决办法
最近从 Op 那里报来一个问题,说是SFTP上传文件不成功.拿到的 Exception 如下: Caused by: java.lang.NoClassDefFoundError: Could not ...
- jquery只能输入数字方法
本方法为验证文本框的输入内容,如果输入的是数字,则提示"√".否则提示“必填,且只能输入数字字符”.在线体验效果:http://keleyi.com/keleyi/phtml/zz ...
- js argument实参集合与局部变量、参数关系
形参 形式上传递的参数 function fn1(a,b,c) {//a,b,c就是形参 实参 实际传递的参数 fn1 (1,2,5);//1,2,5就是实参 argument 定义: 实参的集合 用 ...
- 微信jssdk,实现多图上传的一点心得
一.首先在common.js里封装一个函数,在需要调用jsSDK的页面引用此方法即可实现微信的信息配置function signatureJSSDK() { var url = window.loca ...