Problem Description
You are given a tree with N nodes which are numbered by integers 1..N. Each node is associated with an integer as the weight.

Your task is to deal with M operations of 4 types:

1.Delete an edge (x, y) from the tree, and then add a new edge (a, b). We ensure that it still constitutes a tree after adding the new edge.

2.Given two nodes a and b in the tree, change the weights of all the nodes on the path connecting node a and b (including node a and b) to a particular value x.

3.Given two nodes a and b in the tree, increase the weights of all the nodes on the path connecting node a and b (including node a and b) by a particular value d.

4.Given two nodes a and b in the tree, compute the second largest weight on the path connecting node a and b (including node a and b), and the number of times this weight occurs on the path. Note that here we need the strict second largest weight. For instance, the strict second largest weight of {3, 5, 2, 5, 3} is 3.

 
Input
The first line contains an integer T (T<=3), which means there are T test cases in the input.

For each test case, the first line contains two integers N and M (N, M<=10^5). The second line contains N integers, and the i-th integer is the weight of the i-th node in the tree (their absolute values are not larger than 10^4).

In next N-1 lines, there are two integers a and b (1<=a, b<=N), which means there exists an edge connecting node a and b.

The next M lines describe the operations you have to deal with. In each line the first integer is c (1<=c<=4), which indicates the type of operation.

If c = 1, there are four integers x, y, a, b (1<= x, y, a, b <=N) after c.
If c = 2, there are three integers a, b, x (1<= a, b<=N, |x|<=10^4) after c.
If c = 3, there are three integers a, b, d (1<= a, b<=N, |d|<=10^4) after c.
If c = 4 (it is a query operation), there are two integers a, b (1<= a, b<=N) after c.

All these parameters have the same meaning as described in problem description.

 
Output
For each test case, first output "Case #x:"" (x means case ID) in a separate line.

For each query operation, output two values: the second largest weight and the number of times it occurs. If the weights of nodes on that path are all the same, just output "ALL SAME" (without quotes).

题目大意:维护一棵树,每次删边加边、给一条路径的所有点赋一个值、给一条路径的所有点加上一个值,或询问一条路径上的第二大值及其在这条路径上的出现次数。

思路:算是LCT的模板题吧,维护每个区间的第一大值和第一大值的出现次数,第二大值和第二大值的出现次数。

PS:终于搞出了一个指针版,新模板出来啦~~~

犯过的错误:

1、LCT里splay的旋转和普通splay的旋转有所不同。

2、不能更新超级儿子 nil 的最值。

代码(2859MS):

 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long LL;
#define FOR(i, n) for(int i = 0; i < n; ++i) const int MAXV = ;
const int MAXE = MAXV << ;
const int INF = 0x3f3f3f3f;
const int NINF = -INF; struct LCT {
struct Node {
Node *ch[], *fa;
int val, set, add;
int max[], cnt[], size;
bool rt, rev;
} statePool[MAXV], *nil;
int ncnt; int head[MAXV], val[MAXV], ecnt;
int to[MAXE], next[MAXE];
int n, m, T;
Node *ptr[MAXV]; LCT() {
ptr[] = nil = statePool;
nil->size = ;
FOR(k, ) nil->max[k] = NINF;
} void init() {
memset(head + , -, n * sizeof(int));
ncnt = ;
ecnt = ;
} void add_edge(int u, int v) {
to[ecnt] = v; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; next[ecnt] = head[v]; head[v] = ecnt++;
} Node* new_node(int val, Node *f) {
Node* x = &statePool[ncnt++];
x->ch[] = x->ch[] = nil; x->fa = f;
x->val = val; x->set = NINF; x->add = ;
x->max[] = val; x->cnt[] = ;
x->max[] = NINF;
x->size = ;
x->rt = true; x->rev = false;
return x;
} void dfs(int u, int f) {
ptr[u] = new_node(val[u], ptr[f]);
for(int p = head[u]; ~p; p = next[p]) {
int v = to[p];
if(v == f) continue;
dfs(v, u);
}
} void get_max(int &a, int &b, int c) {
if(a != c) {
if(b < c) swap(b, c);
if(a < b) swap(a, b);
}
} void cnt_max(int a, int &cnt, int b, int bcnt) {
if(a != NINF && a == b) cnt += bcnt;
} void update(Node *x) {
x->size = x->ch[]->size + x->ch[]->size + ; x->max[] = x->val; x->max[] = NINF;
FOR(i, ) FOR(j, )
get_max(x->max[], x->max[], x->ch[i]->max[j]); FOR(k, ) x->cnt[k] = ;
FOR(k, ) cnt_max(x->max[k], x->cnt[k], x->val, );
FOR(k, ) FOR(i, ) FOR(j, )
cnt_max(x->max[k], x->cnt[k], x->ch[i]->max[j], x->ch[i]->cnt[j]);
} void rotate(Node *x) {
Node *y = x->fa;
int t = (y->ch[] == x); if(y->rt) y->rt = false, x->rt = true;
else y->fa->ch[y->fa->ch[] == y] = x;
x->fa = y->fa; (y->ch[t] = x->ch[t ^ ])->fa = y;
(x->ch[t ^ ] = y)->fa = x;
update(y);
} void update_set(Node *x, int val) {
if(x == nil) return ;
x->add = ;
x->val = x->set = val;
x->max[] = val; x->cnt[] = x->size;
x->max[] = NINF;
} void update_add(Node *x, int val) {
if(x == nil) return ;
x->add += val;
x->val += val;
FOR(k, ) if(x->max[k] != NINF)
x->max[k] += val;
} void update_rev(Node *x) {
if(x == nil) return ;
x->rev = !x->rev;
swap(x->ch[], x->ch[]);
} void pushdown(Node *x) {
if(x->set != NINF) {
FOR(k, ) update_set(x->ch[k], x->set);
x->set = NINF;
}
if(x->add != ) {
FOR(k, ) update_add(x->ch[k], x->add);
x->add = ;
}
if(x->rev) {
FOR(k, ) update_rev(x->ch[k]);
x->rev = false;
}
} void push(Node *x) {
if(!x->rt) push(x->fa);
pushdown(x);
} void splay(Node *x) {
push(x);
while(!x->rt) {
Node *f = x->fa, *ff = f->fa;
if(!f->rt) rotate(((ff->ch[] == f) && (f->ch[] == x)) ? f : x);
rotate(x);
}
update(x);
} Node* access(Node *x) {
Node *y = nil;
while(x != nil) {
splay(x);
x->ch[]->rt = true;
(x->ch[] = y)->rt = false;
update(x);
y = x; x = x->fa;
}
return y;
} void be_root(Node *x) {
access(x);
splay(x);
update_rev(x);
} void link(Node *x, Node *y) {
be_root(x);
x->fa = y;
} void cut(Node *x, Node *y) {
be_root(x);
access(x);
splay(y);
y->fa = nil;
} void modify_add(Node *x, Node *y, int w) {
be_root(x);
update_add(access(y), w);
} void modify_set(Node *x, Node *y, int w) {
be_root(x);
update_set(access(y), w);
} void query(Node *x, Node *y) {
be_root(x);
Node *r = access(y);
if(r->max[] == NINF) puts("ALL SAME");
else printf("%d %d\n", r->max[], r->cnt[]);
} void work() {
scanf("%d", &T);
for(int t = ; t <= T; ++t) {
scanf("%d%d", &n, &m);
init();
for(int i = ; i <= n; ++i) scanf("%d", &val[i]);
for(int i = , u, v; i < n; ++i) {
scanf("%d%d", &u, &v);
add_edge(u, v);
}
dfs(, );
printf("Case #%d:\n", t);
for(int i = , x, y, a, b, op; i < m; ++i) {
scanf("%d", &op);
if(op == ) {
scanf("%d%d%d%d", &x, &y, &a, &b);
cut(ptr[x], ptr[y]);
link(ptr[a], ptr[b]);
} else if(op == ) {
scanf("%d%d%d", &a, &b, &x);
modify_set(ptr[a], ptr[b], x);
} else if(op == ) {
scanf("%d%d%d", &a, &b, &x);
modify_add(ptr[a], ptr[b], x);
} else {
scanf("%d%d", &a, &b);
query(ptr[a], ptr[b]);
}
}
}
}
} S; int main() {
S.work();
}

HDU 5002 Tree(动态树LCT)(2014 ACM/ICPC Asia Regional Anshan Online)的更多相关文章

  1. HDU 5000 2014 ACM/ICPC Asia Regional Anshan Online DP

    Clone Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/65536K (Java/Other) Total Submiss ...

  2. HDU 5000 Clone(离散数学+DP)(2014 ACM/ICPC Asia Regional Anshan Online)

    Problem Description After eating food from Chernobyl, DRD got a super power: he could clone himself ...

  3. 2014 ACM/ICPC Asia Regional Anshan Online

    默默的签到 Osu! http://acm.hdu.edu.cn/showproblem.php?pid=5003 #include<cstdio> #include<algorit ...

  4. hdu 5016 点分治(2014 ACM/ICPC Asia Regional Xi'an Online)

    Mart Master II Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  5. HDU 5875 Function 【倍增】 (2016 ACM/ICPC Asia Regional Dalian Online)

    Function Time Limit: 7000/3500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  6. HDU 5029 Relief grain(离线+线段树+启发式合并)(2014 ACM/ICPC Asia Regional Guangzhou Online)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5029 Problem Description The soil is cracking up beca ...

  7. HDU 5052 Yaoge’s maximum profit 光秃秃的树链拆分 2014 ACM/ICPC Asia Regional Shanghai Online

    意甲冠军: 特定n小点的树权. 以下n每一行给出了正确的一点点来表达一个销售点每只鸡价格的格 以下n-1行给出了树的侧 以下Q操作 Q行 u, v, val 从u走v,程中能够买一个鸡腿,然后到后面卖 ...

  8. hdu 5877 线段树(2016 ACM/ICPC Asia Regional Dalian Online)

    Weak Pair Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  9. HDU 5010 Get the Nut(2014 ACM/ICPC Asia Regional Xi'an Online)

    思路:广搜, 因为空格加上动物最多只有32个那么对这32个进行编号,就能可以用一个数字来表示状态了,因为只有 ‘P’   'S' 'M' '.' 那么就可以用4进制刚好可以用64位表示. 接下去每次就 ...

随机推荐

  1. A2DP协议笔记

    1.概述     A2DP(Advanced Audio Distribution Profile)是蓝牙的音频传输协议,典型应用为蓝牙耳机.A2DP协议的音频数据在ACL Link上传输,这与SCO ...

  2. 创建podSpec,使用pod管理第三方库

    提要: podfile文件会先读取.podspec文件,根据.podspec文件的指向来下载第三方库到项目中. 本文先通过一.二.三项,这三个步骤讲解了如何建立一个.podspec文件在本地.coco ...

  3. 实验一补充内容 Java开发环境的熟悉-刘蔚然

    本次实验 PSP时间统计 步骤 耗时百分比 需求分析 5% 设计 10% 代码实现 67% 测试 15% 分析总结 3%

  4. magento去掉小数点后面的0

     <?php echo $_product->getPrice()?> PHP number_format() 函数  <?php echo number_format($_p ...

  5. css中的盒子模型

    css中的盒子模型 css中的盒子模型,有两种,一种是“标准 W3C 盒子模型”,另外一种是IE盒子模型.   1.w3c盒子模型 从图中可以看出:w3c盒子模型的范围包括了:margin,borde ...

  6. 深入理解BootStrap之栅格系统(布局)

    1.栅格系统(布局) Bootstrap内置了一套响应式.移动设备优先的流式栅格系统,随着屏幕设备或视口(viewport)尺寸的增加,系统会自动分为最多12列. 我在这里是把Bootstrap中的栅 ...

  7. iOS UIImageView 显示不规则图片只显示图片一部分保证图片不被压缩

    //只需如下设置imageView [picImg setContentScaleFactor:[[UIScreenmainScreen] scale]]; picImg.contentMode =  ...

  8. iOS:访问地址薄

    地址簿的访问 介绍: 地址簿(Address Book)是一个共享的联系人信息数据库.任何iOS应用程序都可以使用.通过提供常用联系人信息,而不是让每一个应用程序管理独立的联系人列表,可改善用户体验. ...

  9. linux 文件目录

  10. 海康威视摄像头SDK-网页版(NetVideoActiveX23.cab安装)

    1.了解了OCX控件的使用.代码如下: <object classid="CLSID:CAFCF48D-8E34-4490-8154-026191D73924" codeba ...